

magazine

By and for the Java community

ORACLE.COM/JAVAMAGAZINE

JULY/AUGUST 2018

LIBRARIES REFERENCE CARD 65 | STATE DESIGN PATTERN IN DEPTH 66 | QUIZ 76

CREATING
AND HANDLING
PDFs WITH
iTEXT

15
FAST HTML
GENERATION
WITH J2HTML

27
CREATE AND
TRANSFORM
BYTECODES
WITH ASM

39
CONVERTING
LIBRARIES
TO JAVA
MODULES

53

LIBRARIES
CHOOSING THE RIGHT ONE

http://www.oracle.com/javamagazine

PICK
TWO

Meet
release

deadlines

Achieve
product

mandates

Stay
within
budget

Download the ebook!

roguewave.com/java-bestpractices

PICK
TWO

Meet
release

deadlines

Achieve
product

mandates

Stay
within
budget

41.1%
35.1%

of developers view waiting for
others as a major bottleneck

say subpar tools
hold them back

Productivity bottlenecks lead to tradeoffs
in quality, performance & security

Would you rather be
waiting... or coding?

Top 5 best practices for streamlining Java development

http://roguewave.com/java-bestpractices

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

02

66
The State Design Pattern
By Ian Darwin

Elegantly manage state transitions
without large switches or numerous
if statements by using this
design pattern.

76
Fix This
By Simon Roberts and Mikalai Zaikin

Our latest quiz with questions that
test intermediate and advanced
knowledge of the language

27
J2HTML:
AN HTML5
GENERATOR
LIBRARY
By Mert Çalişkan

Easily write small,
dynamically generated
web applications and
get the benefits of
Java’s type safety
and tools as you do.

39
REAL-WORLD
BYTECODE
HANDLING
WITH ASM
By Ben Evans

Scan, inspect, generate,
and transform bytecodes
on the fly with the
ASM library.

53
MIGRATING
YOUR LIBRARY
TO JAVA MODULES
By Nicolai Parlog

Migration to modules
requires careful planning
and diligent execution,
while sidestepping
several “gotchas.”

65
A WEALTH
OF LIBRARIES
A reference card of
the many Java libraries
we have covered in
the last few years

//table of contents /

BUILD COMPLEX PDFs EASILY
By Bruno Lowagie and Joris Schellekens

How to use the popular Java library iText
to create and manipulate PDF files

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
The strong case for embedding scripting
engines into large apps

08
Java Books
Review of Optimizing Java

10
Events
Upcoming Java conferences
and events

64
Java Proposals of Interest
JEP 296: Consolidate the JDK Sources
into a Single Repository

87
Java Proposals of Interest
JEP 335: Deprecate the Nashorn
JavaScript Engine

88
Contact Us
Have a comment? Suggestion? Want to
submit an article proposal? Here’s how.

COVER ART BY WES ROWELL

15

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2018

03

EDITORIAL
Editor in Chief
Andrew Binstock
Managing Editor
Claire Breen
Interim Managing Editor
Leslie Steere
Copy Editors
Lea Anne Bantsari, Karen Perkins
Contributing Editors
Simon Roberts, Mikalai Zaikin
Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo
Design Director
Richard Merchán
Senior Designer
Arianna Pucherelli
Designer
Jaime Ferrand
Senior Publication Designer
Sheila Brennan
Production Designer
Kathy Cygnarowicz

PUBLISHING
Group Publisher
Karin Kinnear
Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Tom Cometa
Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)
Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2018, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise
reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY
DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY
DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions
expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.
The information is intended to outline our general product direction. It is intended for information purposes only, and may not
be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied
upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s
products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by
Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

Join the World’s
Largest Developer

Community

 Download the latest software, tools,
and developer templates

Get exclusive access to hands-on
trainings and workshops

Grow your network with the Developer
Champion and Oracle ACE Programs

Publish your technical articles—and
get paid to share your expertise

ORACLE DEVELOPER COMMUNITY developer.oracle.com
Membership Is Free | Follow Us on Social:

@OracleDevs facebook.com/OracleDevs

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://developer.oracle.com/
http://www.twitter.com/OracleDevs
http://facebook.com/OracleDevs

https://www.jetbrains.com/idea?utm_source=javamag&utm_medium=cpc&utm_campaign=idea2018

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

05

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

Much of the attention today on the “user
experience” focuses on the preferences

of consumers and nonexpert users. When ven-
dors deal with expert users, usability of applica-
tions takes a different form: can experts make
the software do what they need it to do? For
many applications and packages, the answer is
wrapped in all kinds of limitations driven by the
vendor’s perception of expert needs. But there is
one undervalued option that can in many cases
guarantee the expert’s ability to get work done:
an embedded scripting engine. Applications with
a user-accessible scripting option are expert-
friendly; those lacking them are not.

Scripting is the province of skilled users
because it requires some grounding in program-
ming and time invested in learning the details of
a tool’s internal structure. The benefit of applica-
tion programmability has long been recognized.

The most common instance is surely Visual Basic
for Applications (VBA), which enables the writing
of sophisticated macros in Microsoft Excel (and
other Microsoft desktop apps). Other software,
too, has relied on scripting languages of greater
sophistication. For example, Tcl is the primary
scripting tool for electronic design automation
(EDA) and CAD tools. In other spheres, such as UI
design, the embeddable scripting language Lua is
widely popular.

In fact, for many years, the concept of
embedded scripting was sufficiently common that
the original “Gang of Four” book on design pat-
terns included the Interpreter pattern—which
today seems like a positively odd inclusion. The
popularity of this solution crested roughly 10
years ago in the form of domain-specific lan-
guages (DSLs), which had a prolonged moment in
the sun until developers realized that the benefit

Giving Expert Users What They Need
The case for including embedded scripting engines in your apps

#developersrule

developer.oracle.com

Get on the list
for event updates:
go.oracle.com/oraclecoderoadshow

Step up to modern cloud
development. At the
Oracle Code roadshow,
expert developers lead
labs and sessions on PaaS,
Java, mobile, and more.

Level Up at
Oracle Code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com
http://go.oracle.com/oraclecoderoadshow

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

06

//from the editor /
of domain specificity (rather
than a general-purpose solution)
imposed difficult requirements.

Today, the turn from DSLs
toward general-purpose embed-
dable languages has made it
much easier to embed script-
ing options in apps, as no pro-
prietary language needs to be
defined and implemented. Since
the release of Java 6 (when DSLs
were flourishing), the JVM has
included a scripting capability
(under JSR 223). The JDK-provided
scripting engine was Rhino, an
implementation of JavaScript. Not
long thereafter, scripting engines
for Groovy, JRuby, and Jython
became available—the latter two
being implementations of Ruby
and Python, respectively.

Between JavaScript, Ruby,
Python, and Groovy, nearly every
important scripting language
became available for Java devel-
opers to offer their users. But
users are not the only beneficia-
ries of the scripting option—so
are developers.

For example, I spend time
writing typesetting software.
(Everyone has peculiarities, no?)
I’d like to offer my users the
ability to specify column widths
as a percent of the page width,
rather than locking them into

using absolute units. But I don’t
want to limit them to a single
value; I’d like to let them repre-
sent the width as a computation.
For example: half the remaining
width after margins of x width
and a single other column of y
width. However, I have no desire
whatsoever to write a parser and
calculator for the whole range of
possible expressions users might
employ. So, I use an embedded
scripting engine: I let users
declare variables, assign them
values, and write as complex an
expression as they want. I pass
the whole thing to the scripting
engine, which executes the code
and returns a value, which I then
pass to the Java code. With very
little work, I’ve helped my users
and signaled to the experts that
their needs are understood. I’ve
also distinguished my software
from other simpler solutions. And
the scripting language (JavaScript)
is not proprietary. Instead, it’s
fully documented in hundreds of
books and tutorials. Not bad, eh?

In Java 8, Oracle shipped
Nashorn, a faster implementa-
tion of JavaScript, which replaced
Rhino. Today, however, as
described on page 87, there is a
proposal to discontinue active
maintenance of Rhino, which is

intended to sound out develop-
ers on their interest in Nashorn.
The engine currently supports
JavaScript 5.1 fully. The question
is whether the cost of updating it
to be fully compliant with recent
updates to JavaScript is worth-
while, or whether it should remain
fixed at its current release and
eventually be removed from the
JDK (but still available for devel-
opers as a downloadable engine).

I am convinced of Nashorn’s
value and impressed by how sim-
ple it is to use (the use case I’ve
described here takes about two
dozen lines of code). I will con-
tinue using Nashorn because the
experts I’m targeting are likely
to write only short snippets of
JavaScript and version 5.1 of the
language is entirely sufficient.

However, your needs might
be more extensive, in which
case I urge you to look at all the
scripting engines. By including
them in your applications—both
server-based and user-facing—
you’ll save yourself a lot of time
and a lot of work, and you’ll glad-
den your customers.

Andrew Binstock, Editor in Chief
javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Get your free trial:
developer.oracle.com

Experience modern,
open cloud development
with a free trial to Oracle
Cloud platform and
infrastructure services.

Get a Free
Trial to
Oracle Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

Next generation web framework and
UI components for the JVM

https://vaadin.com

https://vaadin.com

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2018

08

Books on Java performance are
few and far between. From top
publishers, we have Scott Oaks’
Java Performance (O’Reilly, 2014) as
well as Java Performance Companion
(Addison-Wesley, 2016), by multiple
authors, which I reviewed in the
September/October 2016 issue. The
latter book was a descent into the
workings of the G1 garbage col-
lector and the Java Serviceability
Agent. Optimizing Java is like the
Oaks book in that it is an exhaus-
tive explanation of the workings of
the JVM, with a principal focus on
the HotSpot implementation and
OpenJDK-based variants.

The authors start with expla-
nations of what performance is,
how it’s measured, and the termi-
nology used to refer to different
aspects of performance. A quick
overview of the JVM is then fol-
lowed by a detailed discussion
of hardware. This is necessary,
because at numerous points in the
rest of the book the authors refer
to concepts that are explained in

this hardware section: the CPU, I/O,
memory paging, and other aspects
of today’s systems. I admire the
decision to anchor future discus-
sions in the hardware, rather than
generalizing in the abstract.

The book takes one additional
step in preparing the reader for the
forthcoming analysis: a detailed
examination of how to run bench-
marks (primarily using the Java
Microbenchmark Harness) and how
to understand the results obtained.
The next three chapters are deep
dives into the garbage collection
(GC), including an excellent tech-
nical overview of GC in general,
followed by analysis of how G1 and
the parallel GC work in the pres-
ent JVM. There follows a chapter
on logging GC performance, and
only then suggestions for how
to tune the garbage collector for
specific loads and execution situ-
ations. By the time you get to the
tuning advice, you are fully capable
of understanding the principles
behind the suggestions.

The next four chapters explore
how the JVM executes code.
Authors Evans and Newland have
been writing about code execution
for this magazine for the last sev-
eral issues. If you like their lucid
explanations, you’ll love these
chapters. They’re nitty-gritty nerd
stim and highly readable. Then
come two chapters on concurrency
and parallel execution, one chapter
on logging and efficient message
processing, and one on profiling. A
final section discusses the changes
wrought by Java 9 and their effects
on the previous material.

Optimizing Java is one of the
most informative explanations
of the internals of the JVM. Even
if you’re not looking to solve a
performance problem, you’ll
benefit from reading it. And if
you believe—as I do—that good
programmers become better by
knowing how exactly their code is
executed, then you owe it to your-
self to read this excellent volume.
—Andrew Binstock

//java books /
OPTIMIZING JAVA
By Ben Evans, James Gough, and Chris Newland

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/SeptOct2016#&pageSet=12&page=0
http://shop.oreilly.com/product/0636920042983.do

Written by leading experts in Java, Oracle Press books offer the most
definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,
 7th Edition

Herb Schildt

Revised to cover Java SE 9, this book
gets you started programming
in Java right away. Free online

supplement covering key new features
in JDK 10 available for download on the
book’s page on OraclePressBooks.com

Java: The Complete Reference,
10th Edition

Herb Schildt

Updated for Java SE 9, this book shows
how to develop, compile, debug,

and run Java programs. Visit the book’s
page on OraclePressBooks.com
to download free supplements

on JDK’s key new features.

OCA Java SE 8
Programmer I Exam Guide

(Exam 1Z0-808)
Kathy Sierra, Bert Bates

Get complete coverage of all objectives for
Exam 1Z0-808. Electronic practice exams
include more than 200 questions that help

you prepare for this challenging test.

OCP Java SE 8
Programmer II Exam Guide

(Exam 1Z0-809)
Kathy Sierra, Bert Bates, Elisabeth Robson

Prepare for the OCP Exam 1Z0-809 with
this comprehensive guide which offers
every subject appearing on the exam.

Includes more than 350 practice questions.

http://www.oraclepressbooks.com

10

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2018

//events /

PHOTOGRAPH BY SFWHALEWATCHING-24/FLICKR

Oracle Code One
OCTOBER 22–25
SAN FRANCISCO, CALIFORNIA
The annual JavaOne event has been reimagined as Oracle Code
One, a new developer conference that includes more languages,
technologies, and developer communities. Look for talks on Go,
Rust, Python, JavaScript, and R, along with the great Java technical
content that developers expect. Topics will include microservices,
containers, AI, chatbots, blockchain, and databases. A Java keynote
and community keynote will remain, and all of the Java-focused
community activities are being carried forward including the
kids event, IGNITE sessions, community day (now as a track), Java
Champion briefings, and Duke’s Choice Awards.

JCrete
JULY 22–28
KOLYMBARI, GREECE
This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java,
combined with afternoons spent
socializing, touring, and enjoy-
ing the local scene. There is also a
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often
bring their families.

JVM Language Summit
JULY 30–31, CONFERENCE
AUGUST 1–2, WORKSHOP
SANTA CLARA, CALIFORNIA
The JVM Language Summit is
an open technical collaboration
among language designers, com-
piler writers, tool builders, run-
time engineers, and VM architects.
Presenters and attendees will
share their experiences as creators
of both the JVM and programming
languages for the JVM. Organizers
also welcome non-JVM developers
of similar technologies to attend or
speak about their runtime, VM, or
language of choice. The conference
will be followed immediately by
a two-day OpenJDK Committers’
Workshop with a focus on the

JDK technical roadmap and dis-
cussion of both technical and
community issues.

NFJS Central Iowa Software
Symposium
AUGUST 3–4
DES MOINES, IOWA
This conference will focus on the
latest technologies and best prac-
tices emerging in the modern
software development and archi-
tecture space. Scheduled topics
include modern Java frameworks
for building microservices and
migrating to Java 9 with the Jigsaw
module system. Team attendance
is encouraged.

O’Reilly Artificial Intelligence
Conference
SEPTEMBER 4–5, TRAINING
SEPTEMBER 5–7, CONFERENCE
AND TUTORIALS
SAN FRANCISCO, CALIFORNIA
This conference centers on learn-
ing how to implement AI in real-
world projects. Topics include
image classification models in
TensorFlow, deep learning with
time-series data, and trust-
less machine learning contracts
on Ethereum.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.oracle.com/code-one/index.html
http://www.jcrete.org/
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
https://nofluffjuststuff.com/conference/des_moines/2018/08/home
https://nofluffjuststuff.com/conference/des_moines/2018/08/home
https://conferences.oreilly.com/artificial-intelligence/ai-ca
https://conferences.oreilly.com/artificial-intelligence/ai-ca

11

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2018

//events /

JavaZone
SEPTEMBER 11, WORKSHOPS
SEPTEMBER 12–13, CONFERENCE
OSLO, NORWAY
JavaZone is a conference for Java
developers organized by javaBin,
the Norwegian Java User Group.
This year the 17-year-old confer-
ence boasts approximately 200
speakers and seven parallel tracks
over two days in addition to a day
of hands-on workshops.

Java Forum Nord
SEPTEMBER 13
HANNOVER, GERMANY
Java Forum Nord is a one-day,
noncommercial conference in
northern Germany for Java devel-

opers and decision-makers. With
more than 25 presentations in
parallel tracks and a diverse pro-
gram, the event also provides
interesting networking opportu-
nities. (Website in German.)

jDays
SEPTEMBER 25
GOTHENBURG, SWEDEN
jDays brings together software
engineers from around the world
to share their experiences in dif-
ferent areas such as Java, software
engineering, IoT, digital trends,
testing, agile methodologies,
and security.

Strange Loop
SEPTEMBER 26–28
ST. LOUIS, MISSOURI
Strange Loop is a multidisciplinary
conference that brings together
the developers and thinkers build-
ing tomorrow’s technology in
fields such as emerging languages,
alternative databases, concur-
rency, distributed systems, and
security. Talks are generally code-
heavy and not process-oriented.

NFJS New England Software
Symposium
SEPTEMBER 28–30
FRAMINGHAM, MASSACHUSETTS
This developer event covers the
latest trends within the Java and
JVM ecosystem. Scheduled are
talks on Java 9, reactive APIs, and
microservices. Team attendance
is encouraged.

KotlinConf
OCTOBER 3, WORKSHOPS
OCTOBER 4–5, CONFERENCE
AMSTERDAM, THE NETHERLANDS
This is the principal conference
for the up-and-coming JVM lan-
guage, Kotlin. Keynotes by Kotlin
Project Lead Andrey Breslav and
Purple Evolution CEO Alicia Carr
are slated.

JAX London
OCTOBER 8 AND 11, WORKSHOPS
OCTOBER 9–10, CONFERENCE
LONDON, ENGLAND
JAX London is a four-day con-
ference for software engineers
and enterprise-level profession-
als, bringing together the world’s
leading innovators in the fields
of Java, microservices, continu-
ous delivery, and DevOps. Topics
slated for this year include deliv-
ering new features in the JDK,
developing Java applications on
blockchain with web3j, and cloud-
native Java with OpenJ9.

Desert Code Camp
OCTOBER 13
CHANDLER, ARIZONA
Desert Code Camp is a free, devel-
oper-based conference built on
community content. This year’s
sessions include talks on server-
less microservices and building a
website with Angular.

Java Enterprise Summit
OCTOBER 17–19
DÜSSELDORF, GERMANY
Java Enterprise Summit is a Java
EE training event exploring new
paradigms such as microservices,
API design, and state-of-the-

PHOTOGRAPH BY JENS-PETTER SALVESEN/FLICKR

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://2018.javazone.no
https://javaforumnord.de/site/2018/
http://www.jdays.se/
https://www.thestrangeloop.com/about.html
https://nofluffjuststuff.com/conference/boston/2018/09/home
https://nofluffjuststuff.com/conference/boston/2018/09/home
https://kotlinconf.com/
https://jaxlondon.com/
https://oct2018.desertcodecamp.com/home
http://javaenterprisesummit.de

12

//events /

ORACLE.COM/JAVAMAGAZINE  ///   JULY/AUGUST 2018

art enterprise Java applications.
(Website in German.)

EclipseCon Europe
OCTOBER 23–25
LUDWIGSBURG, GERMANY
The Eclipse event for the European
community will host presenta-
tions on Jakarta EE, Microprofile,
and many other Java technologies.
An OSGi community event is col-
located with this conference.

O’Reilly Software Architecture
Conference
OCTOBER 29–31, CONFERENCE
AND TUTORIALS
OCTOBER 31–NOVEMBER 1,
TRAINING
LONDON, ENGLAND
For four days, expert practi
tioners share new techniques
and approaches, proven best
practices, and technical skills.
Topics include application,
microservices, event-driven, and
evolutionary architectures.

VOXXED DAYS MICROSERVICES
OCTOBER 29–31, CONFERENCE
OCTOBER 31, WORKSHOPS
PARIS, FRANCE
Learn—and share—every-
thing you need to know about

microservices at Voxxed Days
Microservices, a new event with
two days of sessions followed
by a day of workshops. Session
tracks include everything from
organization and culture to those
focused on architecture, testing,
scaling, integration, and beyond.

QCon San Francisco
NOVEMBER 5–7, CONFERENCE
NOVEMBER 8–9, WORKSHOPS
SAN FRANCISCO, CALIFORNIA
Although this year’s content had
not yet been announced at press
time, recent QCon conferences
have offered several Java tracks
along with tracks related to web
development, DevOps, cloud com-
puting, and more.

W-JAX
NOVEMBER 5–9, CONFERENCE
NOVEMBER 6–8, EXPO
MUNICH, GERMANY
W-JAX is dedicated to cutting-
edge Java and web development,
software architecture, and inno-
vative infrastructures. Experts
share their professional experi-
ences in sessions and workshops.
This year’s event promises more
than 160 speakers and 180 work-
shops, sessions, and keynotes.

DeveloperWeek Austin
NOVEMBER 6–8
DeveloperWeek Austin will fea-
ture tracks devoted to JavaScript,
virtual reality development,
microservices, and AI develop-
ment; a Hiring Mixer Expo; and
two days of hackathons.

J-Fall 2018
NOVEMBER 7–8
J-Fall is organized by and for the
Dutch Java community. With 1,500
Java professionals attending,
J-Fall is the biggest Java confer-
ence of the Netherlands, boast-
ing more than 40 sessions and
four hands-on labs, more than
60 top speakers from all around
the world, and a preconference
day with in-depth workshops
and the Masters of Java contest.
Speakers include Apache Maven
Project Chair Robert Scholte,
Google Developer Advocate Ray
Tsang, and AWS Senior Solutions
Architect Brian Hammons.

Devoxx Belgium 2018
NOVEMBER 12–16
ANTWERP, BELGIUM
The largest Java developer con-
ference in Europe takes place
again in Antwerp, Belgium, with

multiple tracks covering Java,
the mechanics of the JVM, and
JVM languages. The event is
held in a multiplex theater with
code and slides shown on giant
movie screens.

Codemotion Berlin
NOVEMBER 20–21
BERLIN, GERMANY
Organizers were still accepting
speaker submissions at press time,
but last year’s event featured
talks on reinforcement learning,
microservices testing, and build-
ing domain-specific languages.
The event is open to all languages
and technologies and features
coding lectures and workshops.

Topconf Tallinn
NOVEMBER 20–22
TALLINN, ESTONIA
Topconf Tallinn is an international
software conference covering Java,
open source, agile development,
architecture, and new languages.

Are you hosting an upcoming
Java conference? Send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.eclipsecon.org/europe2018/
https://conferences.oreilly.com/software-architecture/sa-eu
https://conferences.oreilly.com/software-architecture/sa-eu
https://voxxeddays.com/microservices/
https://qconsf.com/
https://jax.de/en/
http://www.developerweek.com/Austin/
https://jfall.nl
https://devoxx.be/
https://codemotionworld.com
https://www.topconf.com/conference/topconf-tallinn-2018
mailto:javamag_us%40oracle.com?subject=

http://devoxx.com
http://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

14

//libraries /

When developers speak with admiration of the Java ecosystem, they’re refer-

ring especially to two things: the abundance of excellent development tools

and the vast number of third-party libraries. Libraries are available today

to do almost anything that is required, and for the most part, they’re open

source and freely available. A quick look at Maven Central—one of the prin-

cipal repositories for Java artifacts—lists more than 3 million entries, of which nearly 300,000

are unique. That’s a lot of choices!

To help you navigate such a wide body of work, we regularly cover libraries in Java Magazine,

and once a year we dedicate an entire issue to them. In this issue, we include an annotated list

(page 65) of the libraries we’ve covered over the years—it contains every-

thing from cryptocurrency to JVM internals. We also explain the mechanics

of library operations. This issue, for example, includes a hands-on discus-

sion of how to convert pre-Java 9 libraries (page 53) to Java modules. In ear-

lier issues, we examined how the JVM finds and loads libraries (PDF), and we

explained in depth how best to write libraries.

On the following pages we look at the most popular library for creating

PDF files (page 15), explain how to create HTML on the fly (page 27) without

using templates, and examine ways to transform Java bytecodes (page 39) in

useful ways. We’ve also included another deep dive into a design pattern—

this time the State pattern (page 66)—and, of course, we’ve bundled our quiz

(page 76) and book review (page 8).

Finding and Using
the Good Libraries

iTEXT PDF LIBRARY 15
J2HTML: GENERATE HTML
ON THE FLY 27
ASM: READ, GENERATE,
AND TRANSFORM JAVA
BYTECODES 39
CONVERTING LIBRARIES TO
JAVA MODULES 53
REFERENCE CARD OF LIBRARIES
COVERED SINCE 2015 65

ART BY WES ROWELL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2015-11-ClassLoaders-Selajev.pdf
http://www.javamagazine.mozaicreader.com/MayJune2017#&pageSet=28&page=0

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

15

//libraries /

i Text is an open source library that is used to create and process PDF documents in web and

other applications. It’s licensed under the AGPL and is available in both Java and C# ver-

sions. The latest major release is iText 7.1, which is the first version that supports the new

PDF 2.0 standard.

iText supports many different flavors of PDF, including PDF/A, which is the standard for

archiving, and PDF/UA, which is the standard defining how to make PDF documents accessible

for the blind and visually impaired. With it, you can create invoices in the PDF format, fill out

PDF forms, assemble PDF documents into portfolios, remove private data from PDF documents,

and perform many other activities associated with document creation and management.

In this article, we introduce some of iText’s functionality:
■■ We create a PDF document from scratch, using simple objects such as Paragraph, List,

and Image.
■■ We then process a data set stored in a comma-separated value (CSV) file and render that data

to a PDF file.
■■ Finally, we take a data set presented in a browser using HTML and CSS, and we convert that

web page into a PDF document.

Creating a PDF Document
We created the PDF document shown in Figure 1 from Java code, using iText. You can see that it

has a paragraph saying “Hello World,” which is followed by a block of text in a different font

consisting of a paragraph and a list. On the right side of the text, you also see an image of a

hooded developer.

The code in Listing 1 shows how we created this document.

Build Complex PDFs Easily
How to use the popular Java library iText to create and manipulate PDF files

BRUNO LOWAGIE

JORIS SCHELLEKENS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

16

//libraries /

Listing 1: Hello.java code
public void createPdf(String dest) throws IOException {
 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
 Document document = new Document(pdf);
 document.add(new Paragraph("Hello World!"));
 PdfFont font = PdfFontFactory
 .createFont(StandardFonts.TIMES_ROMAN);
 Div div = new Div().setFont(font).setFontSize(14);
 div.add(new Paragraph("iText is:"));
 List list = new List()
 .setSymbolIndent(12)
 .setListSymbol("\u2022");
 list.add(new ListItem("Never gonna give you up"))
 .add(new ListItem("Never gonna let you down"))
 .add(new ListItem("Never gonna run around and desert you"))
 .add(new ListItem("Never gonna make you cry"))

Figure 1: “Hello World” PDF document created with iText

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

17

//libraries /

 .add(new ListItem("Never gonna say goodbye"))
 .add(new ListItem("Never gonna tell a lie and hurt you"));
 div.add(list);
 document.add(div);
 Image img = new Image(ImageDataFactory.create(IMG))
 .setFixedPosition(300, 625);
 document.add(img);
 document.close();
}

Let’s examine this code step by step.

Low-level document and writer objects. First, we created a PdfDocument instance, using a

PdfWriter as a parameter. These are low-level objects. The PdfWriter is responsible for writing

the PDF bits and bytes to a destination. In this case, the destination is a String defining the path

to a file. Alternatively, the PdfWriter accepts a file or an OutputStream. For instance, if you want

to create a document that exists only

in memory, you can create a PdfWriter

with a ByteArrayOutputStream. This is

typically done when the file is created

on a server but served to a client, as is

the case with a web application.

You could now use the

PdfDocument instance to create a

PdfPage instance, and then draw content on that page using the low-level operators and

operands that are described in the PDF ISO 32000 standard. However, that would be a very

tedious job. Fortunately, you can keep all this heavy lifting under the hood by using iText’s

high-level options.

High-level objects. We used the PdfDocument instance to create a Document object. We can then

create objects such as Paragraph, List, and Image, and add these objects to the Document.

You can use the many features available
through the iText API to program your document
so that it looks exactly the way you want it to look, but
you can also use shortcuts.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

18

//libraries /

1.	 We added a new Paragraph containing the String Hello World!

2.	 We created a Div object, for which we set a different font that was obtained from a

PdfFontFactory. We also set the font size to 14. The Div object held a Paragraph and a List.

Both inherited the font and font size from their parent. We created a List with an indenta-

tion of 12 points and a bullet as the list symbol. We added several ListItems to this list. We

added the Paragraph and the List to the Div, and then added the Div to the document.

3.	 We then created an Image object using image data obtained from an ImageDataFactory. In

this case, IMG is the path to an image. We also defined a pair of x and y coordinates for the

image. When we added the image to the document, the lower-left corner of the image cor-

responded with this coordinate.

Paragraph, Div, List, ListItem, and Image are just a few of the building blocks that are available in

iText; other building blocks include Text, Link, Tab, AreaBreak, LineSeparator, Table, and Cell.

Closing the document. Once we finished adding content, we closed the document. Closing the

document automatically closes the PdfDocument, the PdfWriter, and the OutputStream used by

PdfWriter.

In this example, all the content was hardcoded in our source code. In real-world applica-

tions, you can obtain the data from an external source, such as a database. In the next example,

we used the Table and Cell classes to publish data stored in a CSV file in tabular form.

Publishing Data to a PDF File
Suppose that you have a CSV file listing all the states of the US, along with each state’s abbre-

viation, capital, most populous city, population, square miles, and times zone(s) as well as

whether it uses daylight saving time (DST).

An example of an entry in such a file might be:

CALIFORNIA;CA;Sacramento;Los Angeles;36,961,664;163,707;PT (UTC-8); ;YES

Let’s see how to take this CSV file and convert it into the PDF file shown in Figure 2.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

19

//libraries /

In the code of Listing 2, we created a PdfDocument instance just like we did in Listing 1. Then,

we did the following:
■■ The page size of the page we created in our first example was A4, which is the standard size for

documents outside of the US. In this example, we wanted to create a document with pages in

the Letter size in landscape orientation. We passed this page size information as the second

parameter when we created the high-level Document object. We also reduced the default mar-

gins to 12 points.
■■ We organized all the content into a Table with nine columns. We defined the width of each

column using a relative width. For instance, the first column is four times as wide as the sec-

ond column. The total width of the table is defined as 100% of the available width on the page,

taking into account a margin of 12 points to the right and 12 points to the left. The table has a

header for which we wanted to use a different style. Therefore, we created a Style object that

caused text to be written in bold and to be aligned in the center of its container.
■■ We read the CSV file line by line using a BufferedReader. We processed the first line (the

header) using the header style. We looped over the rest of the lines and processed them with-

out defining a style.

Figure 2: Data set rendered to a PDF table

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

20

//libraries /

All of this was done in the createPdf() method.

Listing 2: TableExample.java (part 1)
public void createPdf(String dest) throws IOException {
 PdfDocument pdf = new PdfDocument(new PdfWriter(dest));
 Document document = new Document(pdf, PageSize.LETTER.rotate());
 document.setMargins(12, 12, 12, 12);
 Table table = new Table(new float[]{4, 1, 3, 4, 3, 3, 3, 3, 1});
 table.setWidth(UnitValue.createPercentValue(100));
 Style header = new Style()
 .setBold().setTextAlignment(TextAlignment.CENTER);
 BufferedReader br = new BufferedReader(new FileReader(DATA));
 String line = br.readLine();
 process(table, line, header);
 while ((line = br.readLine()) != null) {
 process(table, line, null);
 }
 br.close();
 document.add(table);
 document.close();
 }

In the createPdf() method, we processed each line using the process() method. This method is

shown in Listing 3.

Listing 3: TableExample.java (part 2)
public void process(Table table, String line, Style style) {
 StringTokenizer tokenizer = new StringTokenizer(line, ";");
 while (tokenizer.hasMoreTokens()) {
 Cell cell = new Cell()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

21

//libraries /

 .add(new Paragraph(tokenizer.nextToken()));
 if (style == null) {
 table.addCell(cell);
 }
 else {
 cell.addStyle(style);
 table.addHeaderCell(cell);
 }
 }
}

We used a StringTokenizer to split a CSV record into fields, and we created a Cell instance for

each field. Then we did the following:
■■ If no style was defined, we just added the cell to the table, using the addCell() method.
■■ If a style was defined, we added the style to the cell, and we added the cell to the table as a

header cell using the addHeaderCell() method.

By making the distinction between header cells and data cells, we told iText what to do if the

table didn’t fit the page.

As you can see in Figure 3, header cells are repeated on every page. There’s also an

addFooterCell() method if you want repeating footer rows, but we didn’t need any footers in

this simple example.

At this point, you could adapt the code to do the following (among other options):
■■ Introduce different styles
■■ Introduce background colors for the cells
■■ Add page numbers

You can use the many features available through the iText API to program your document

so that it looks exactly the way you want it to look, but you can also use shortcuts, as we

illustrate next.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

22

//libraries /

Figure 3: Rows distributed over different pages with repeating header

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

23

//libraries /

Figure 4: US states shown in a browser

Converting HTML Data to PDF
Suppose that you already have in the form of an HTML file all the data you want to render as a

PDF file. Figure 4 shows a web page in a browser listing all the states of the US, with white text

on a black background for the header row and an alternating background for the data rows.

If you look inside the HTML file that we used in Figure 4 (shown in Listing 4), you can see

that text and background colors are defined using CSS. You can also see that the page size, ori-

entation, and a footer are defined using an @page rule. When printed, each page would have a

footer labeled “Page X of Y,” where “X” is the current page number and “Y” is the total number

of pages.

Listing 4: HTML and CSS to render data in a browser
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html;
 charset=windows-1252">
 <style>
 th { background: black; color: white; }
 tr:nth-child(even) { background: #C0C0C0; }
 @page {
 size: A4 landscape;
 @bottom-right {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

24

//libraries /

 content: "Page " counter(page) " of " counter(pages);
 }
 }
 </style>
</head>
<body>
<table width="100%">
 <thead>
 <tr>
 <th>name</th>
 <th>abbr</th>
 <th>capital</th>
 <th>most populous city</th>
 <th>population</th>
 <th>square miles</th>
 <th>time zone 1</th>
 <th>time zone 2</th>
 <th>dst</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>ALABAMA</td>
 <td>AL</td>
 <td>Montgomery</td>
 <td>Birmingham</td>
 <td>4,708,708</td>
 <td>52,423</td>
 <td>CST (UTC-6)</td>
 <td>EST (UTC-5)</td>
 <td>YES</td>
 </tr>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

25

//libraries /

 <tr>
...

If you take a closer look at the HTML code, you’ll notice that the header is in a <thead> section to

make sure it will be repeated on every page. The 50 data rows are inside the <tbody> section.

The code to convert this HTML file to PDF is very simple: it consists of the single line shown

in Listing 5.

Listing 5
public void createPdf(String html, String dest) throws IOException {
 HtmlConverter.convertToPdf(new File(html), new File(dest));
}

Figure 5 shows the result after executing the createPdf() method. It looks exactly like the HTML

that was rendered and then shown in Figure 4, but now there are also page numbers.

Figure 5: HTML rendered to PDF with iText and pdfHTML

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

26

//libraries /

The code becomes slightly more complex if you want to introduce special fonts, add book-

marks, and perform other customizations—all of which are illustrated in the tutorial on the

iText website.

Conclusion
In this article, we created two PDF documents from scratch using the iText core libraries. With

these libraries, you can also fill out interactive forms, digitally sign documents, split and merge

existing PDF files, and reuse and extract content from existing documents. On top of the iText

core libraries, you can use different add-ons, including pdfHTML—the add-on we used in our

example when we converted an HTML file to PDF—and pdfSweep, which can be used to physi-

cally remove content from documents. (For instance, using a regular expression that matches

a social security number [SSN], you can physically remove the SSN from a batch of PDF docu-

ments.) iText has also been active combining PDF with blockchain technology. With the

pdfChain add-on, you can register documents in a blockchain instead of digitally signing them.

By adding metadata such as a status and the document location, you can automate your docu-

ment workflow and ensure the long-term validity of your PDF files. </article>

Bruno Lowagie (@bruno1970) is the original developer of iText. He is an active member of the ISO and PDF
communities and has authored several books about iText. When he is not working in the PDF world, Lowagie
spends much of his time with his wife and two sons.

Joris Schellekens (@Joris1989BE) is a research engineer with iText who focuses on disruptive technologies
such as machine learning and natural language processing. He is passionate about new technology and finding
ways to solve challenges with PDF. When Schellekens is not researching or coding for iText, you can find him
working on his own coding projects, working on math projects, or listening to music.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://developers.itextpdf.com/content/itext-7-examples/itext-7-converting-html-pdf
https://github.com/itext/i7j-pdfchain

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

27

//libraries /

j 2html is a small but powerful library that enables you to generate type-safe HTML code with

its fluent API. The idea behind it is to allow developers to write declarative Java code with a

one-to-one mapping to HTML code.

Note that j2html is not a templating engine, but it provides an alternative way to dynami-

cally create and reuse UI code in a type-safe way. It was created and is actively maintained by

David Åse. In this article, I show you the bits and pieces you need to get started with the library

and then move on to advanced use cases. The source for the examples is available for download.

Getting Started
You can obtain the latest version of j2html from Maven’s Central Repository with the following

dependency definition. The latest available version at the time of this writing is 1.3.0.

<dependency>
 <groupId>com.j2html</groupId>
 <artifactId>j2html</artifactId>
 <version>1.3.0</version>
</dependency>

If you are using Gradle, the dependency can be added as follows:

compile 'com.j2html:j2html:1.3.0'

j2html: An HTML5
Generator Library
Easily write small, dynamically generated web applications
and get the benefits of Java’s type safety and tools ecosystem.

MERT ÇALIŞKAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://j2html.com
https://j2html.com
https://bitbucket.org/javamagazine/magdownloads/downloads/2018-07-j2html-Examples.zip

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

28

//libraries /

JDK 8 is a minimum requirement as of version 1.2.2 of j2html.

Now, let’s generate your first HTML code. Creating a body with a heading inside is simple, as

shown in Listing 1.

Listing 1.
html(
 body(
 h1("Hello, Java Magazine Readers!")
)
);

That will render the HTML output shown in Listing 2.

Listing 2.
<html>
 <body>
 <h1>Hello, Java Magazine Readers!</h1>
 </body>
</html>

The body() and h1() methods are statically imported. They come from one of the most impor-

tant classes of the library, the TagCreator class. It can be statically imported with the syntax

shown in Listing 3.

Listing 3.
import static j2html.TagCreator.*;

Let’s continue with the more complex example shown in Listing 4, where I create a table with a

list of employees provided as rows. The page will have a stylesheet file referenced in the head

section and a div that acts as a header on top of the employee table.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

29

//libraries /

Listing 4.
List<ContainerTag> rows = new ArrayList<>();
rows.add(tr().with(
 td().withText(("Mert")),
 td().withText(("Caliskan"))
));

String output =
 html(
 head(
 title("Java Magazine Examples"),
 link().withRel("stylesheet").withHref("my.css")
),
 body(
 div().withId("header").with(h1("Employees")),
 table().withClass("tableClass").with(
 thead(
 tr(
 th("Name"), th("Last Name")
)
)
)
 .with(tbody().with(rows)),
 footer().withClass("footerClass")
)
).render();

In this code, I am defining the list of rows as a list of ContainerTags (more about the class hierar-

chy after the next listing), which will map to the content that will be rendered inside the table.

I move on with an HTML container tag definition created with the html() method, and then I set

the header of the page with the head() method. I created a stylesheet file inside the head with

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

30

//libraries /

the link() method to demonstrate including a resource. The output is shown in Listing 5.

Listing 5.
<html>
 <head>
 <title>Java Magazine</title>
 <link rel="stylesheet" href="my.css">
 </head>
 <body>
 <div id="header">
 <h1>Employees</h1>
 </div>
 <table class="tableClass">
 <thead>
 <tr>
 <th>Name</th>
 <th>Last Name</th>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Mert</td>
 <td>Caliskan</td>
 </tr>
 </tbody>
 </table>
 <footer class="footerClass"></footer>
 </body>
</html>

The important part of the class hierarchy is shown in Figure 1. All the tags referenced with

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

31

//libraries /

methods, such as head(), body(), and div(), are represented with an instance of ContainerTag

within the library. ContainerTag stores the name of the tag along with its children referenced as

List<DomContent>. DomContent is the abstract class that refers either to text or tags used inside

the HTML document. ContainerTag implements the interface Renderable as well, which defines

the content that can be represented as a string, and it provides a default implementation for

the render() methods. The Attribute class defines the attributes of HTML elements, and they

can be implemented by the with*() method syntax—for example, withRel(), withHref(), and

withClass(), as I did in Listing 4.

Deep Dive
j2html provides various approaches for HTML generation, and I will try to address some of them

in this section. Appending texts and tags to each other is easy with the join() method, with

which you can concatenate input elements, in a given order, separated by a space. The method

also removes spaces before periods and commas. An example is shown in Listing 6.

Figure 1: Important part of the class hierarchy

C

CC

CC

I

C

C

Renderable

Attribute

Tag Text UnescapedText

ContainerTag EmptyTag

DomContent

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

32

//libraries /

Listing 6.
body(
 p(join(
 i("Java Magazine"),
 "is a bimonthly deep dive into",
 b("Java"),
 "and the",
 b("JVM.")
)
)
);

The snippet returns the HTML output shown in Listing 7.

Listing 7.
<body>
 <p>
 <i>Java Magazine</i> is a bimonthly deep dive into
 Java and the JVM.
 </p>
</body>

id and class attributes can be obtained from the string provided by parsing it using CSS selec-

tors. In Listing 8, the attrs() method that defines the id attribute of the body is set to main, and

the class attribute is set to content.

Listing 8.
. . .
body(attrs("#main.content"),
 h1("Heading!")
);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

33

//libraries /

In this code, the attrs() method creates an instance of the Attr.ShortForm class, which is a

wrapper class that stores two string properties inside: id and classes. The Attr class contains

the type-safe enumerations of the HTML attributes, so they can be used as Attr.ID, Attr.HEIGHT,

Attr.WIDTH, and so on.

Conditional generation is also possible with the iff() and iffElse() methods shown in

Listing 9.

Listing 9.
. . .
div().withClasses("menu",
 iff(isActive, "active")
);

div().withClasses("item",
 iffElse(isSelected, "selected", "not-selected")
);

By setting the value of isSelected to true, the output will be rendered as shown in Listing 10.

Listing 10.
<div class="menu active"></div>

<div class="item selected"></div>

You can create partial code snippets to reuse them for generating HTML snippets that you

use often. Listing 11 creates a login form by reusing the code to generate the HTML con-

tent for the username and password input fields and the Submit button of a form. The

genericInput() method defines a way for creating an input field with the given type, name,

and placeholder values.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

34

//libraries /

Listing 11.
form().withMethod("post").with(
 genericInput("text","uname", "Enter Username"),
 genericInput("password", "psw", "Enter Password"),
 submitButton()
);

private static Tag genericInput(String type,
 String name,
 String placeholder) {
 return input()
 .withType(type)
 .withId(name)
 .withName(name)
 .withPlaceholder(placeholder)
 .isRequired();
};

private static Tag submitButton() {
 return button("Login").withType("submit");
};

The HTML output of the login form is shown in Listing 12.

Listing 12.
<form method="post">
 <input type="text" id="uname" name="uname"
 placeholder="Enter Username" required>
 <input type="password" id="psw" name="psw"
 placeholder="Enter Password" required>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

35

//libraries /

 <button type="submit">
 Login
 </button>
</form>

By applying filtering rules, you can generate conditional HTML with the each() and filter()

methods provided by j2html or with the stream() and filter() methods shipped with Java 8. The

code in Listing 13 filters an employee list with the employee id set to an even number, first by

using the j2html methods and then by using Java 8’s stream and filtering approach.

Listing 13.
String j2htmlFilter = ul().with(
 each(filter(employees, e -> e.id % 2 == 0),
 employee -> li(
 h2(employee.name),
 p(employee.title)
)
)
).render();

String javaFilter = ul().with(
 rawHtml(employees.stream()
 .filter(e -> e.id % 2 == 0).map(
 employee -> li(
 h2(employee.name),
 p(employee.title)
)
).map(DomContent::render)
 .collect(Collectors.joining()))
).render();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

36

//libraries /

If you want to generate a custom HTML snippet inside a <div> generated by the div() method,

you can use the rawHtml() method, as shown in Listing 14.

Listing 14.
. . .
div(
 rawHtml("<p>I like HTML</p>")
);

The method creates an instance of the UnescapedText class, which is a wrapper class for the text

representation (see Figure 1).

Handling JavaScript and CSS Resources
TagCreator provides style() and script() methods to create <style> and <script> HTML tags,

respectively. A sample that includes resources is shown in Listing 15.

Listing 15.
script(
 rawHtml("alert('ok')")
);

style(
 rawHtml("body {background-color: blue}")
);

TagCreator also provides static methods for loading JavaScript and CSS resources directly from

files. I show this in Listing 16. The methods suffixed with _min provide the ability to minify the

content while transforming it into a string representation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

37

//libraries /

Listing 16.
scriptWithInlineFile("/test.js");
styleWithInlineFile("/test.css");

scriptWithInlineFile_min("/test.js");
styleWithInlineFile_min("/test.css");

The default minifier used for JavaScript simply strips out whitespace and newlines. CSSMin is

the default minifier for CSS. Keep in mind that the content loaded with these methods is going

to be represented as inline content in the generated HTML code. The actual resource loading is

implemented within the InlineStaticResource class, where content read from the given file is

used as input to create a container tag with the script() or style() methods.

Conclusion
If you need to generate HTML content on the server side in a declarative, type-safe way, j2html

is a solution that you’ll definitely want to have in your class path. Writing declarative Java code

with one-to-one HTML component mapping in a builder fashion has never been this easy.

The HTML generation is fast compared to existing templating engines, so it’s worth try-

ing j2html if you have performance concerns. But j2html is not a template engine, and it doesn’t

have the capability to compete with one. If you were building a static website, I would advise not

using j2html, because you’ll probably end up having to generate all the content that you insert

into the coding. If you are using a CSS framework (for example, something like Bootstrap),

j2html is not going to play nicely with the framework. So, use j2html at your own risk.

However, j2html is definitely the Swiss Army knife that you’ll want to have in your pocket if

you are dealing with small, dynamically created web applications. </article>

Mert Çalişkan (@mertcal) is a Java Champion and the director of OpsGenie Academy. He is a coauthor of
PrimeFaces Cookbook (Packt Publishing, 2013) and Beginning Spring (Wiley Publications, 2015). He is work-
ing on his latest book, Java EE 8 Microservices, while he develops Payara Server inside the Payara Foundation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/barryvan/CSSMin

*Discount based on the onsite registration price. Copyright © 2018, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates.

ORACLE CODE ONE
The Most Inclusive Developer Conference

Oct. 22–25, 2018 | San Francisco | #CodeOne

•	 Discover the Latest on Java—from the Source

•	 Experience Leading-edge Technology Sessions

•	 Connect with Your Global Community

REGISTER NOW – Save $400 by Aug. 11*

// Silver Sponsor

http://oracle.com/code-one

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

39

//libraries /

The ASM library is a production-quality open source library for reading, writing, and manip-

ulating JVM bytecode. It is used as part of many projects (including Gradle and the Kotlin

compiler) and is used in shaded form (that is, as copied code with renamed packages to avoid

namespace collisions) inside the JDK. In fact, it is used as the code-generation engine to enable

runtime support of lambda expressions. Note that when you are working with ASM, you should

use the external version, not the shaded version present inside the JDK.

In this article, I explain how to use ASM to perform some useful operations. In what fol-

lows, I assume that the reader is already familiar with some basics of JVM bytecode and

the structure of class files. You can find the code from this article on the Java Magazine

download page.

A “Hello World” Example
Let’s take a look at a very traditional example, namely creating a class that will print “Hello

World!” I will use ASM’s ClassWriter API for this exercise. It is a simple API that makes heavy

use of the Visitor pattern to achieve its goals.

My example produces a new class file, HelloWorld.class, completely from scratch. This class

will not have any Java source code representation—that is, it will exist only as a compiled class.

The HelloWorld.class file will be created by another class, MakeHelloWorld, which will use the

ASM libraries to assemble HelloWorld.class as output. However, the generated output class will

run completely standalone and will not need ASM or any other JAR as a runtime dependency.PHOTOGRAPH BY JOHN BLYTHE

Real-World Bytecode
Handling with ASM
Scan, inspect, generate, and transform bytecodes on the fly with the ASM library.

BEN EVANS

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://asm.ow2.io/
https://bitbucket.org/javamagazine/magdownloads/wiki/2018%20Articles

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

40

//libraries /

Within MakeHelloWorld, the overall structure of the class creation is to use a ClassWriter field,

referred to as cw, to build up the class by visiting these aspects of the class in turn:
■■ Overall metadata
■■ Constructor body
■■ Definition of the main method and its bytecode

After all aspects of the class have been visited, you can make the writer object ready for serial-

ization by calling visitEnd() and then convert it to a byte array that can be written to disk.

In code, this overall driver method looks like the following, and it only needs to be called

with the name of the output class:

public byte[] serializeToBytes(String outputClazzName) {
 cw.visit(V1_8, ACC_PUBLIC + ACC_SUPER, outputClazzName,
 null, "java/lang/Object", null);
 addStandardConstructor();
 addMainMethod();
 cw.visitEnd();
 return cw.toByteArray();
}

The serialization method starts by visiting the top-level metadata (class file version, flags, class

name, and superclass name) and then calls methods to add a constructor and the main method,

before finishing the class and converting it to a frozen byte array.

You create the constructor like this:

void addStandardConstructor() {
 MethodVisitor mv =
 cw.visitMethod(ACC_PUBLIC, "<init>", "()V", null, null);
 mv.visitVarInsn(ALOAD, 0);
 mv.visitMethodInsn(
 INVOKESPECIAL, "java/lang/Object", "<init>", "()V", false);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

41

//libraries /

 mv.visitInsn(RETURN);
 mv.visitMaxs(1, 1);
 mv.visitEnd();
}

This code works with a MethodVisitor that is created from the ClassWriter field before visiting

each instruction in turn. After that, you must finish the method by noting how many stack slots

the code uses. You do this by calling visitMaxs().

The main method is added using another MethodVisitor:

void addMainMethod() {
 MethodVisitor mv =
 cw.visitMethod(ACC_PUBLIC + ACC_STATIC,
 "main", "([Ljava/lang/String;)V", null, null);
 mv.visitCode();
 mv.visitFieldInsn(GETSTATIC, "java/lang/System",
 "out", "Ljava/io/PrintStream;");
 mv.visitLdcInsn("Hello World!");
 mv.visitMethodInsn(INVOKEVIRTUAL, "java/io/PrintStream",
 "println", "(Ljava/lang/String;)V", false);
 mv.visitInsn(RETURN);
 mv.visitMaxs(3, 3);
 mv.visitEnd();
}

The code here is a little more complex, because objects need to be retrieved from static fields

(via a GETSTATIC opcode and then the method must be called).

When I run MakeHelloWorld, I see HelloWorld.class appear in the file system. I can run

the generated class in the usual way—java HelloWorld—and when I do, I see the familiar

message appear.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

42

//libraries /

The visitor API for ASM is easier to understand than some of the alternative APIs offered by

the library. The general principle is that the different sections of the class file must be visited

in the correct order (or skipped if there’s nothing required for that section). The MethodVisitor

interface is quite general.

For the case of MakeHelloWorld, I’ve obtained a visitor from the ClassWriter, and the actual

implementation of the interface is MethodWriter. This keeps a reference back to the ClassWriter

that created it and allows metadata about the method to be built up as the various visit meth-

ods are called.

The method represented by a MethodWriter needs to be sealed up when it is completed,

and so mv.visitEnd() is called as the final action of the methods that create the methods in

HelloWorld.

Let’s decompile the generated class via javap -c HelloWorld.class and look at the bytecode

that results from the ASM class generation:

public class HelloWorld {
 public HelloWorld();
 Code:
 0: aload_0
 1: invokespecial #8 // Method java/lang/Object."<init>":()V
 4: return

 public static void main(java.lang.String[]);
 Code:
 0: getstatic #16 // Field
 // java/lang/System.out:Ljava/io/PrintStream;
 3: ldc #18 // String Hello World!
 5: invokevirtual #24 // Method
 // java/io/PrintStream.println:(Ljava/lang/String;)V
 8: return
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

43

//libraries /

The correspondence between the Java bytecode instructions and the calls to the visitor API is

clear, especially in the main() method. On the whole, ASM tries to stay very close to the byte-

code format, while still providing enough of a high-level API to allow you to be productive.

Let’s consider two more examples with a bit more complexity:
■■ Exploring the “lost update” problem, as illustrated by trying to increment a counter safely
■■ Exploring a prototype of a “safe class loader” that tries to prevent any user code from execut-

ing any native methods

Defeating Lost-Update Protection
I’ll start with some simple code to demonstrate the lost-update effect, which I’ll describe in a

moment. One of the classic ways to introduce the effect is via an incrementing class:

public class Counter {
 private int i = 0;

 public int increment() {
 return i = i + 1;
 }
}

This class needs a driver:

int MAX_INC = 10_000_000;
Counter c = new Counter();
Runnable r = () -> {
 for (int i = 0; i < MAX_INC; i++) {
 c.increment();
 }
};
Thread t1 = new Thread(r);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

44

//libraries /

Thread t2 = new Thread(r);
t1.start();
t2.start();
t1.join();
t2.join();
int disc = 2 * MAX_INC - c.increment() + 1;
System.out.println("Discrepancy: "+ disc);

The code is incrementing 10 million times on each thread, so increment() is called a total of

20 million times. However, when you run this code, you can clearly see that the code reports a

discrepancy—not all calls to increment() appear to have been recorded in c.

This is the Lost Update antipattern, and even code as simple as increment() can exhibit it.

This pattern is one of the classic pitfalls of concurrent programming in modern environments.

The lost update is caused by the operating system scheduler running both threads on CPU

cores at the same time. Each thread increments the value of i as it sees it in the local CPU cache

but does not flush the result to main memory. This results in an indeterminate number of

updates being performed by both threads before the CPU flushes the cache line to main memory.

These cache-only writes are then lost from the overall total being recorded in main memory.

The solution, of course, is to add the synchronized keyword to increment(), and then the dis-

crepancy is always zero; all updates to i are flushed to main memory before being reread.

To see this, let’s start with a synchronized counter and write a tool using ASM that switches

off all synchronization in a class. Then, the transformed class will suffer from the lost-update

problem even though the original code was safe.

The OfflineUnsynchronizer code will operate in the following way:
■■ Read in the class file using a ClassReader.
■■ Walk through the ASM representation of the class, using a custom ClassVisitor.
■■ Write the Java bytecode back out as a byte[], using a ClassWriter.
■■ Save the bytecode as a transformed class file.

I need to know some details of Java bytecode to carry out the transformation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

45

//libraries /

For example, in Java bytecode, a synchronized method is represented by a flag called

ACC_SYNCHRONIZED on the method, so I need to remove that flag from any method that I visit.

However, to be really sure that all the synchronization is gone, I also need to know that the

block form of synchronization is represented slightly differently. If I have some code like this:

Object o = ...
synchronized (o) {
 // ...
}

It will be turned into a sequence of bytecodes that looks a bit like this:

[Sequence that leaves o on top of the stack]
monitorenter

// ...

[Reload o]
monitorexit

Both monitorenter and monitorexit bytecodes consume the top of the stack and lock or unlock

the object that they find there. So if these opcodes were replaced with a basic pop, this would

strip the synchronization out of any method body that is encountered.

The resulting code is represented by the following two simple classes: an Unsynchronizing

ClassVisitor and an UnsynchronizingMethodVisitor, both of which extend ASM framework

classes:

public class UnsynchronizingClassVisitor extends ClassVisitor {

 public UnsynchronizingClassVisitor(int api, ClassVisitor cv) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

46

//libraries /

 super(Opcodes.ASM5, cv);
 }

 @Override
 public MethodVisitor visitMethod(int flags, String name,
 String desc, String signature, String[] exceptions) {
 int maskedFlags = flags & (~ACC_SYNCHRONIZED);

 MethodVisitor baseMethodVisitor =
 super.visitMethod(maskedFlags, name, desc,
 signature, exceptions);

 return new UnsynchronizingMethodVisitor(baseMethodVisitor);
 }
}

The UnsynchronizingClassVisitor class uses a Decorator pattern: it takes the baseMethodVisitor

and wraps it by adding functionality that is called only when a no-argument opcode is encoun-

tered in the body of the method, as shown in this code:

public class UnsynchronizingMethodVisitor extends MethodVisitor {
 public UnsynchronizingMethodVisitor(MethodVisitor mv) {
 super(Opcodes.ASM5, mv);
 }

 @Override
 public void visitInsn(final int opcode) {
 switch (opcode) {
 case Opcodes.MONITORENTER:
 case Opcodes.MONITOREXIT:
 super.visitInsn(Opcodes.POP);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

47

//libraries /

 return;
 }

 super.visitInsn(opcode);
 }
}

I use the following bit of code to drive this transformation:

try (InputStream in =
 Files.newInputStream(Paths.get(fName))) {
 ClassReader classReader = new ClassReader(in);
 ClassWriter writer =
 new ClassWriter(classReader, ClassWriter.COMPUTE_FRAMES);

 ClassVisitor unsynchronizer =
 new UnsynchronizingClassVisitor(writer);
 classReader.accept(unsynchronizer,
 ClassReader.SKIP_FRAMES | ClassReader.SKIP_DEBUG);

 Path newClazz = Paths.get(transformName(fName));
 Files.write(newClazz, writer.toByteArray());
} catch (Exception ex) {
 System.err.println(
 "Exception whilst reading class: " + fName);
 ex.printStackTrace(System.err);
}

Now, if I take a synchronized version of the Counter class, I can run it through the Offline

Unsynchronizer, and the resulting transformed class will suffer the lost-update problem even

though the original code was safe.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

48

//libraries /

Ruling Out Native Code
Java bytecode is platform-independent, so it cannot call operating system libraries directly (for

example, to handle I/O operations). Instead, Java programs (including the JDK) call out to native

methods (written in C) that in turn call the relevant parts of the operating system.

Suppose you have a use case where you want to allow users to execute unknown code as

part of a framework or container. Such a capability has obvious security concerns, so you might

want to reduce the risk by disallowing certain actions—such as running native methods—in the

users’ classes. Fortunately, the Java security model relies on class loading, and it allows you to

hook into the loading process to customize how (and whether) new code is loaded. [For more on

how class loading works, see the article “How the JVM Locates, Loads, and Runs Libraries” by

Oleg Selajev, which you can download as a PDF. —Ed.]

The overall scheme could look like this:
■■ Write a custom class loader.
■■ During class loading, inspect every “call site” where a method is called.
■■ Check to see whether the metadata for the method indicates that the method is native.
■■ If it is, reject the class and fail class loading.
■■ If you reach the end without failing, the class is good and can be loaded.

Here’s how to write a class loader that will reject any non-pure Java classes it is asked to load:

public final class PureJavaClassLoader extends ClassLoader {
 private final List<String> auxClasspath = new ArrayList<>();

 public PureJavaClassLoader(ClassLoader parent) {
 super(parent);
 }

 public void setupClasspath(final String auxiliaryClassPath) {
 for (String entry : auxiliaryClassPath.split(":")) {
 if (entry.startsWith("/")) {
 auxClasspath.add(entry);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bitbucket.org/javamagazine/magdownloads/downloads/2015-11-ClassLoaders-Selajev.pdf

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

49

//libraries /

 } else {
 System.err.println(
 "Bad classpath entry seen: " +
 entry + ", ignoring");
 }
 }
 }

 Path findClassFile(String qualifiedClassName)throws IOException {
 final String fileName =
 qualifiedClassName.replaceAll("/", "\\.") +".class";
 for (String s : auxClasspath) {
 Path trial = Paths.get(s, fileName);
 if (trial.toFile().exists())
 return trial;
 }

 throw new IOException("Class "+ qualifiedClassName +
 " not found on classpath");
 }
}

For simplicity, I’ll manage an auxiliary class path of directories that I want to search for classes to

load, rather than using the main class path. The findClassFile method is a helper that locates the

file corresponding to a qualified class name. The real action is in the findClass method to which

class loaders delegate from loadClass(). This is where I implement the check for native code:

@Override
public Class<?> findClass(final String qualifiedClassName) throws
 ClassNotFoundException {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

50

//libraries /

 Class<?> cls = null;
 try {
 return super.findClass(qualifiedClassName);
 } catch (ClassNotFoundException ignored) {
 try (final InputStream in = Files.newInputStream(
 findClassFile(qualifiedClassName))) {
 final byte[] allClassBytes = in.readAllBytes();
 final ClassReader classReader =
 new ClassReader(allClassBytes);
 final PureJavaCheckingClassVisitor
 classVisitor =
 new PureJavaCheckingClassVisitor();

 // If there's debug info in the class,
 // don't look at it
 classReader.accept(
 classVisitor, ClassReader.SKIP_DEBUG);

 if (classVisitor.containsNative()) {
 throw new ClassNotFoundException(
 "Class cannot be loaded - contains native code");
 } else {
 return defineClass(null, allClassBytes, 0,
 allClassBytes.length);
 }
 } catch (IOException e) {
 throw new ClassNotFoundException(
 "Error finding and opening class", e);
 }
 }
}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

51

//libraries /

In the previous code, I call in.readAllBytes() directly, rather than passing in to the ClassReader

constructor. This is because the ASM class ClassReader consumes input streams, so I can’t reuse

in after it’s been used to create a class reader.

Next, I create an instance of our custom class visitor, PureJavaCheckingClassVisitor. This

visitor simply visits the metadata for each method in the class being considered and records

whether any method is native. It is defined as the following:

public class PureJavaCheckingClassVisitor extends ClassVisitor {
 private boolean containsNative = false;

 public PureJavaCheckingClassVisitor() {
 super(Opcodes.ASM5);
 }

 @Override
 public MethodVisitor visitMethod(int flags, String name,
 String desc, String signature, String[] exceptions) {
 if ((flags & ACC_NATIVE) > 0) {
 containsNative = true;
 }

 return new MethodVisitor(Opcodes.ASM5) {};
 }

 public boolean containsNative() {
 return containsNative;
 }
}

If the class visitor ever sees a native method, it sets a flag. The flag is read by the PureJava-

ClassLoader, which rejects the class with a ClassNotFoundException if the flag has been set. This

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

52

//libraries /

exception is used, rather than the alternative natural choice (SecurityException), because the

contract of ClassLoader (which is the supertype of this class) uses the checked exception

ClassNotFoundException. In this circumstance, use of a runtime exception (such as Security-

Exception) could violate some expectations of clients of the classloader.

Assuming that an exception has not been thrown, the bytes of the class file are fed to

defineClass(), which is a protected method defined on ClassLoader so it is accessible only to

subclasses—effectively custom class loaders. This returns the Class<?> object that I return from

findClass(), and the class is successfully loaded.

Conclusion
A word of caution: the previous example will indeed prevent any classes with native methods

from being loaded. However, in a real environment, you would also have to take into account

other cases, such as the following:
■■ Code that calls a native method of an already-loaded class (the transitive case)
■■ Reflective access to native methods
■■ Invocation of native methods via the MethodHandles interface

Not only that, but some native methods are essential for proper functioning of virtually all Java

programs (such as getClass() or Object::hashCode).

A full discussion of what would be required to fully restrict native code from running is too

far afield for this article. In practice, some sort of approved list of core native methods within

the JDK would have to be used. Nevertheless, note the things I did with ASM in the example: I

read through bytecodes for a given release of Java, skipped over debugging data, and identified

specific bytecodes. And earlier, I transformed bytecodes on the fly. </article>

Ben Evans (@kittylyst) is a Java Champion, a tech fellow and founder at jClarity, an organizer for the London
Java Community (LJC), and a member of the Java SE/EE Executive Committee. He has written four books on
programming, including the recent Optimizing Java (O’Reilly).

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

53

//libraries /

Two issues all library writers will have to face sooner or later is how to make their library

work with Java modules and how to convert the library into the Java modules introduced in

Java 9. The process for doing these things is not entirely straightforward and requires careful

planning, the right tools, and some engineering work.

In this article, I go through the necessary steps for taking a Java 8 library all the way to

modules. I begin by discussing tools, the likely migration challenges, and running parallel

builds for multiple Java versions. I then look at configuring your library for use as an automatic

module, and finally I provide guidance on how to modularize your library. With this informa-

tion, you can plot your own migration and modularization strategy. It will be very helpful if you

know the basics of the module system, particularly about strong encapsulation of module inter-

nals—but if you don’t, you will still be able to follow most of what’s covered here.

I should point out that modules are not required for programs to run on Java 9 or later, but

you do need to know how libraries work as modules.

The Right Tools
For the best Java 9 integration into your favorite IDE, you should use that IDE’s most current

version, because Java 9 support is constantly improved. If being on the cutting edge isn’t for

you, you should at least use IntelliJ IDEA 2017.2 or Eclipse Oxygen.1a (before that version, Eclipse

needed Java 9 support plugins; they are obsolete now). And if you use NetBeans, you need at

least version 9.0.

Migrating Your Library
to Java Modules
Migration requires careful planning and diligent execution,
while sidestepping several “gotchas.”

NICOLAI PARLOG

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

54

//libraries /

Similarly, use a current version of your build tool. In the case of Maven, this should at least

be version 3.5.0 of the application itself and version 3.7.0 of the compiler plugin. For Gradle, use

at least version 4.2.1.

Migration Challenges for Moving to Java 9
Java 9 introduced modules to the ecosystem, and with it came many changes. Some were caused

by the presence of modules. These changes caused subtle differences in Java’s behavior—and a

few could be considered incompatibilities. Here’s a brief summary of what you can expect and

what can be done about it. Note that you’re unlikely to encounter all of these issues, so don’t

worry too much.

Failing access to JDK-internal APIs. The most obvious problem you might encounter is access

to internal APIs. If your code depends on classes from sun.* packages or most com.sun.* pack-

ages, you’re bound to see compilation errors like this:

error: package com.sun.java.swing.plaf.nimbus is not visible
import com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel;
 ^
 (package com.sun.java.swing.plaf.nimbus is declared
 in module java.desktop, which does not export it)
1 error

The proper fix is to stop using such classes, but if you can’t do that yet, you can make them

available at compile time and runtime by using the command-line flag --add-exports. If you’re

accessing JDK-internal APIs at runtime via reflection, take a look at the flags --add-opens and

--illegal-access.

A word of warning regarding command-line flags: if you use flags to fix any of the problems

I’m describing here, your users will usually need to apply the same flags when running their

application with your library. That can be a serious inconvenience, so try to avoid that if at all

possible. If you absolutely must use flags, make sure you document them well.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

55

//libraries /

Dependencies on unresolved Java EE modules. Historically, the JDK contained a few APIs that

belonged to Java EE—for example, JavaBeans Activation Framework (JAF), JTA, JAXB, JAX-WS,

and CORBA. To more clearly separate Java SE and Java EE and in preparation for Java EE’s move

away from Oracle’s aegis, these APIs were deprecated in Java 9 and will be removed in Java 11.

If your library depends on these APIs being present in the JDK, you will get errors like this

when building your code on Java 9 or later releases:

error: package javax.xml.bind is not visible
import javax.xml.bind.JAXBException;
 ^
 (package javax.xml.bind is declared in module java.xml.bind,
 which is not in the module graph)
1 error

Although it is possible to fix the error with the command-line flag --add-modules, that will help

you only until Java 11. The long-term solution is to pick an implementation of the API you need

and add it as a regular dependency.

Failing casts to URLClassLoader. Some libraries interact with the class path—for example, to

examine its content or add additional JAR files. They often do that by casting the system class

loader to URLClassLoader, because it has the needed methods. But Java 9 changed the class-

loading strategy, and it uses a different class loader. Therefore, such casts will fail with an error

similar to this:

Exception in thread "main" java.lang.ClassCastException:
 java.base/jdk.internal.loader.ClassLoaders$AppClassLoader
 cannot be cast to java.base/java.net.URLClassLoader
 at monitor.Main.logClassPathContent(Main.java:46)
 at monitor.Main.main(Main.java:28)

The solution depends on what exactly you want to do with the class loader, including the following:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

56

//libraries /

■■ If you only want to examine the class path content, look at the system property java.class.path.
■■ To add new JAR files to the running application, you need to create a new class loader (you can

use URLClassLoader for this) that delegates to the existing system class loader.
■■ For other use cases, look at ClassLoader; a few methods have been added, and perhaps you’ll

find what you need by consulting the Javadoc.

New Java version string format. From Java 9 on, the system property java.version and its sib-

lings no longer start with 1.x but instead start with x. Therefore, on Java 9 you get 9, 9.0.1, and

9.0.4 back, and you’ll get something similar for Java 10 and later. If you’re tired of parsing that

string, check out the new type java.lang.Runtime.Version, which was introduced in Java 9 and

provides easy access to version information.

There are a few more details, such as the

changed JDK folder structure, that could theo-

retically go wrong when you migrate to Java 9,

but as a library developer, you’re unlikely to

encounter them.

Building on Multiple Java Versions
As you’ve seen, Java 9 contains several changes that might affect your library’s behavior. It

stands to reason that while you are updating your code to adapt to these changes, you need a

continuous integration (CI) build that compiles and tests on Java 9 and later. This step usually

means setting up an additional build that runs in parallel to your existing one.

You might be tempted to avoid a parallel CI build by raising your project’s baseline to Java 9

or Java 10. However, that would considerably reduce your user pool, at least for now, because

many sites have not yet migrated to Java 9 or later. Even more important, with new releases

coming out every six months, you’re likely to need parallel builds for future releases of your

library anyway. It pays to be able to set up multiple CI builds on various Java versions. So how do

you go about that?

Configuring the CI server. I generally recommend running the entire build on the desired Java

version (as opposed to just compiling and testing with it). The first step, then, is to configure

If users start modularizing their
own project, they have to declare each
dependency—including declaring your
library—with a requires directive.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://docs.oracle.com/javase/10/docs/api/java/lang/ClassLoader.html
https://blog.codefx.org/java/java-9-migration-guide

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

57

//libraries /

your CI server to actually execute the build several times, each time with a different Java ver-

sion. Jenkins and Travis CI, among others, make this fairly easy.

Even if your build takes a long time and resources are scarce, don’t put this off. You should

build with the nonbaseline versions at least every night. While this practice allows problem-

atic commits to stay undetected for an entire day, you will at least find out by next morning that

something went wrong.

Configuring the build steps. Running the build is the easy part; configuration can be the dif-

ficult part. It is possible that, depending on the Java version running the build, you’ll need to

apply command-line flags to compilation or test runs, change a dependency’s version, or edit a

build step’s configuration. To be able to do this, you need to familiarize yourself with your build

tool’s support for conditional configuration.

For Maven, profiles are what you’re looking for. The following block creates a profile that

automatically activates itself when the build runs on Java 9 or later:

<profiles>
 <profile>
 <!-- automatically activate the profile if running on Java 9 -->
 <activation>
 <jdk>[9,)</jdk>
 </activation>
 <!-- version-specific build configuration goes here-->
 </profile>
</profiles>

You can then apply a version-specific configuration inside that <profile> block. For example,

to export an internal package from a platform module that Google Guice depends on, you could

do this:

<profile>
 <id>java9+</id>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

58

//libraries /

 <activation>
 <jdk>[9,)</jdk>
 </activation>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <configuration>
 <!-- deny illegal access to detect new problems -->
 <!-- Google Guice 4.1 uses the internal method
 java.lang.ClassLoader::defineClass -->
 <argLine>
 --illegal-access=deny
 --add-opens java.base/java.lang=ALL-UNNAMED
 </argLine>
 </configuration>
 </plugin>
 </plugins>
 </build>
</profile>

Configuring the build process. If you’re truly unlucky, you need to configure not only indi-

vidual build steps but the entire build process. This happens, for example, if a plugin you’re

using as part of your build relies on Java EE modules. In this case, the build process itself needs

command-line flags to work on Java 9.

For Maven, the solution is to create a .mvn/jvm.config file in your project’s root folder

and put the required command-line options in there. When a Maven command is executed,

the command will look in that file and apply the options to the Java process it launches to

run Maven.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

59

//libraries /

The problem is that Maven also does this

on Java 8, which then fails due to unknown

command-line options such as --add-modules.

As a solution, I’ve named the configuration files

jvm9.config, so they are ignored by default, and

then I let the CI server call a script that renames

them all to jvm.config before launching the build. It’s not exactly beautiful, but it works.

I never dealt with these Maven features before building on Java 9, and in the beginning, I

wasn’t enthused to dig through them. But I found it to be a great opportunity to get to know

Maven a little better, and that has paid off many times over.

Your Library as an Automatic Module
Congratulations! If you’ve gotten this far, your project is built and tested on Java 9. Your users

will be thankful and will start using your library—at first on the class path, but soon they’ll

want to take the next step and use it as a module. How does that work? After all, you have not

created a module yet.

Automatic module crash course. If users start modularizing their own project, they have to

declare each dependency—including declaring your library—with a requires directive. For that

to work, though, they need a module name to use with requires. And they need to place that on

the module path.

If the Java runtime encounters a JAR file without a module descriptor (module-info.class) on

the module path, it will create a so-called automatic module for it. It’s just like a regular module,

but there are certain assumptions about its properties: an automatic module exports all pack-

ages and can read all other modules.

The more interesting aspect is the name. Ideally, the automatic module name is defined

with the manifest entry Automatic-Module-Name. If that’s not the case, the module system derives

a name from the JAR file’s name. That fallback is obviously unstable across development envi-

ronments and causes additional problems if your library ever changes its module name (for

example, because you modularize it and give it a proper name).

The final step into the future that
Java 9 brought is to turn your project’s
JAR file into a modular JAR file.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

60

//libraries /

If your users work on an application, however, it’s not too bad: they can simply update all

their requires directives and use your library under its new name. If they also work on a library,

things are much more complicated. Chances are, they released a version of their project that

requires your JAR file by its filename, and now your newer JAR files cannot fulfill that depen-

dency because your module has a different name. Even worse, if a user transitively depends on

your library twice, once under each name, that user is in serious trouble.

Defining the automatic module’s name. Consequently, users will be wary of depending on your

plain JAR file as a module if you don’t set the Automatic-Module-Name entry in your JAR manifest.

So, once you’ve made sure your library works well and you don’t expect any major refactoring

where packages get moved between JAR files (if you ship more than one), you should pick a mod-

ule name (see the next section for more on that) and set the manifest entry.

With the Maven JAR plugin, you could do that as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jar-plugin</artifactId>
 <configuration>
 <archive>
 <manifestEntries>
 <Automatic-Module-Name>$name</Automatic-Module-Name>
 </manifestEntries>
 </archive>
 </configuration>
</plugin>

Just replace $name with the actual name. As soon as you’ve done that, other modules can start

requiring your JAR file as an automatic module under a stable name. Make sure you advertise

that fact and the chosen module name prominently in your documentation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

61

//libraries /

Modularizing Your Library
The final step into the future that Java 9 brought is to turn your project’s JAR file into a modu-

lar JAR file. That’s actually fairly simple: create a module declaration (a file module-info.java) in

your project’s root source folder and use it to define your library’s module name, dependencies,

exports, and services, for example:

module $name {
 requires $module;
 exports $package;
 uses $service;
 provides $service with $provider
}

I’ll go through the different properties shortly, but before I do, I want to discuss what else you

need to do: nothing. If your tools are up to date, they will automatically detect that you’re build-

ing a module and do the right thing. IDEs and build tools will include the module declaration

in the list of files to compile, put dependencies on the module path, and package the resulting

module-info.class into the JAR file they’re building. There usually isn’t anything explicit you

need to do.

With that said, I’ll turn to the details of modularizing your library. Note that this is not a

module system tutorial; I expect you to know how the module system works. [If you don’t, read

up on it in this article. —Ed.]

Picking a module name. Just like package names, module names should be globally unique. The

easiest way to achieve that is to take the same approach as with package names: pick a domain

that is associated with the project and reverse it. If this results in your module name being a

prefix of your package names, you did it right.

Declaring dependencies. By default, each nontest dependency in your build configuration

should result in a requires directive in the module declaration. Note that you can also have

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=18&page=0

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

62

//libraries /

optional dependencies (with requires static) and dependencies that are exposed to modules

requiring your library (with requires transitive).

One option is to depend on automatic modules. As I implied when discussing automatic

modules, it is technically feasible and generally acceptable to depend on nonmodular JAR files,

so not all of your dependencies need to be modularized for you to modularize your library. But

be aware that it is extremely careless to require nonmodular JAR files that do not define an

automatic module name. As pointed out earlier, you will expose your users to serious problems

if you do that—so please don’t.

Consequently, you should not publish modular JAR files for your library unless all of your

dependencies are either a module or at least define their automatic module name with a mani-

fest entry. In fact, Maven explicitly warns

that you should not publish the artifact

if you require a module by its filename. I

would even go a step further and implore

you to check all of your transitive depen-

dencies as well—none of them should be

required by their filename.

Handling split packages. Another consideration is how to handle split packages. Once you start

treating dependencies as modules, the module system exposes them to more checks, which

they might fail. One example is that some JAR files split packages. This refers to a situation in

which a package—say, org.lib—and two different JARs each have a type in that package—say,

org.lib.Foo in foo.jar and org.lib.Bar in bar.jar. The module system does not allow that and

complains loudly when these JARs end up on the module path.

Although there are ways to make such a configuration work (look up --patch-module if you

need to), they require extensive build tool configuration, which your users would have to repeat.

My recommendation is not to put that task onto them. Therefore, if your dependencies split

packages, work with them to fix the problem before publishing your project as a module.

Exporting packages. The next step after naming your module and declaring your dependencies

is to define your public API. The technical aspect is simple: just name in an exports directive all

Be aware that it is extremely careless
to require nonmodular JAR files that do not define
an automatic module name.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

63

//libraries /

the packages whose public types should be accessible. The devil is in the details, though.

Before the module system was introduced, there was no way to mark classes that needed to

be public but that you didn’t consider a public API. You could always back out of supporting them

by adding a comment or having your documentation say which classes were supported. That

meant a package could contain some supported and some unsupported public classes—the new

module system takes that option away.

By exporting a package, you’re not only making all public types in it accessible; you’re also

making a promise that you’re going to support all of them. If you don’t want to support a class, that

class needs to be nonpublic or in a nonexported package.

This means that defining your public API might require some shuffling around of classes

that you do not support. The most common solution is to move them to a different package,

which is subsequently not exported.

Using and providing services. If your library interacts with other JAR files by providing or using

services, you need to include this information in your module declaration, as follows:
■■ For every service you use—meaning, for every type that you call ServiceLoader::load with—

you need to add a uses directive to the declaration.
■■ For every class name in a file in META-INF/services, you need to add the line provides $file-

name with $class-name to the declaration.

Note that your users are not forced to use your modular JAR file as a module, and if they don’t,

the module declaration is ignored. That means you need to keep the files in META-INF/services

around and in sync with your module declaration.

Delivering multiple modules. I want to point out two details for the situation in which you

deliver your library in more than one JAR file. The first is that, as I’ve discussed, split packages

are a problem. Therefore, make sure your JAR files don’t split packages between them. If they do

now, you need to move classes around or rename packages before modularizing your library.

The second point concerns the moving around of classes. With the class path, it didn’t

matter which JAR file a class came from. As long as some JAR file contained a needed class, the

application worked just fine. That made it possible to move classes between JAR files without

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

64

//libraries /

breaking downstream code (if it was done carefully).

Modules make this much harder. For a module to

access types in one of your library modules, it needs to

read that exact module, which usually means it needs

to require it. If an application requires only one of your

several library modules and you move a class out of

that module and into another one, the application will

not be able to access the class, and its compilation and

execution will fail.

So, moving types between modular JAR files has

a higher risk of causing compatibility problems than

with plain JAR files. Be careful when you have to do it.

Conclusion
Going from Java 8 to full modules on Java 9 and later

releases can be quite a lot of work, but for most proj-

ects it isn’t. The smaller your library and the more

plain Java code it contains, the less effort it typically

requires. </article>

Nicolai Parlog (@nipafx) has found his passion in software
development. He constantly reads, thinks, and writes about
it, and codes for a living as well as for fun. He wrote the just-
published book The Java Module System (Manning). He blogs
about software development at codefx.org and is a long-tail
contributor to several open source projects.

//java proposals of interest /

This proposal, which was implemented in Java 10, illus-
trates some of the difficulties in maintaining a code-
base that has the special requirements of the JDK.
Specifically, Java Enhancement Proposal (JEP) 296
addresses the following problem: many code commits
span several of the individual repositories in the source
base. Consequently, it’s not possible to make atomic
commits to the source code manager. (When speaking of
a commit, atomic means that the action is carried out in
its entirety as a single operation—or not at all.) Clearly,
if a commit must be done separately to several reposito-
ries to be complete, there is no possibility of atomicity.
This means that every commit is labor-intensive and
fragile until completed.

In the JDK, there are eight principal repositories,
and roughly 1,100 defects and requests span more than
one of them. So this JEP proposed merging these reposi-
tories into a single repository.

The advantages of a central, single repository are
increasingly being recognized by companies that have
large codebases. For example, Google and Facebook have
frequently broadcast their use of a single, monolithic
repository for all their products’ code. The Google repos-
itory, which contains more than 2 billion lines of code,
has reportedly generated several advantages: unified
versioning, simplified code sharing, and greater reuse.

Invariably, this JEP will require changes to inter-
nal development practices and DevOps. Should those
changes have value to Java developers at large, we’ll
report on them in a future issue.

JEP 296: Consolidate the JDK
Sources into a Single Repository

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/296
https://www.youtube.com/watch?v=W71BTkUbdqE&feature=youtu.be&t=14m30s
https://www.wired.com/2015/09/google-2-billion-lines-codeand-one-place/

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

//libraries /

A Wealth of Libraries
The many Java libraries we have covered in the last few years

65

Blockchain
 web3j: Create Ethereum

transactions and smart block­

chain contracts. Jan/Feb 2017

Bytecode Operations
 Byte Buddy: Generate

bytecode on the fly, write

and deploy agents, and

more. Nov/Dec 2015

 ASM Library: The most

widely used Java bytecode

manipulation library.

Page 39 of this issue

Command-Line Parsing
 JCommander: Simplified

parser for complex command

lines. Nov/Dec 2015

Control Flow
 JDeferred: Asynchronous

processing using promises

and futures. May/June 2017

Core Java SE
 Java 9 library updates:

Collections and Streams.

July/Aug 2017

 Java 9 library updates:

Optionals and Completable­

Futures. Sept/Oct 2017

Data
 JSON-P: How to use the

JSON library in Java EE.

July/Aug 2016

Document Processing
 iText: Generating and

manipulating PDF files.

Page 15 of this issue

JSF
 OmniFaces: A single, inte­

grated, multipurpose utility

library for JSF. Jan/Feb 2016

HTML
 j2html: Generating HTML

on the fly. Page 27 of this issue

 jsoup: HTML parser and data

extractor. May/June 2017

Reactive Programming
 Vert.x and RxJava: The popu­

lar, wide-ranging library for

reactive programming.

Jan/Feb 2018

And several articles on the
mechanics of Java libraries

 Designing a library properly:

The developer of Joda-Time

explains good library design.

May/June 2017

 How the JVM locates,

loads, and runs libraries.

Nov/Dec 2015 (PDF)
 Building libraries with Java 9

modules. Page 53 of this issue

REFERENCE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/JanFeb2017#&pageSet=36&page=0
http://www.javamagazine.mozaicreader.com/NovDec2015#&pageSet=19&page=0
http://www.javamagazine.mozaicreader.com/NovDec2015#&pageSet=13&page=0
http://www.javamagazine.mozaicreader.com/MayJune2017#&pageSet=16&page=0
http://www.javamagazine.mozaicreader.com/JulyAug2017#&pageSet=21&page=0
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=33&page=0
http://www.javamagazine.mozaicreader.com/JulyAug2016#&pageSet=31&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2016#&pageSet=23&page=0
http://www.javamagazine.mozaicreader.com/MayJune2017#&pageSet=22&page=0
http://www.javamagazine.mozaicreader.com/JanFeb2018#&pageSet=32&page=0
http://www.javamagazine.mozaicreader.com/MayJune2017#&pageSet=28&page=0
http://www.javamagazine.mozaicreader.com/NovDec2015#&pageSet=30&page=0
https://bitbucket.org/javamagazine/magdownloads/downloads/2015-11-ClassLoaders-Selajev.pdf

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

66

//patterns /

We’re all familiar—even nonprogrammers, implicitly—with the notion of a state machine.

The machine is anything that can be in one of several discrete states with defined transi-

tions. A simple coffee machine can be only on or off. The Start button turns it on. Another but-

ton, or a sensor of some kind, turns it off. It cannot be 72% on, nor can it be in a state of making

popcorn or playing music. A media player, whether implemented in hardware or software, can

be in any one of several states: stopped, paused, playing, or rewinding. The Play button transi-

tions from the stopped state to the playing state. The Pause button transitions from the playing

state to the paused state. The Stop button transitions from either the playing or paused state to

the stopped state.

The behavior of the buttons (or Java methods) is contextually dependent upon what state

the machine is in. Pressing Stop when the machine isn’t doing anything is ignored. Pressing

Start when the machine is running also will usually be ignored.

It’s common to diagram these transitions by using state diagrams similar to the one

in Figure 1.

Figure 1 is for a stateful device such as a media player, but you can imagine the diagram

would be similar for, say, 3D printer firmware and many other kinds of devices. And the same

general idea would apply for a graphics application, which might have edit and preview modes/

states, or for a computer game with player-play, computer-play, and won/lost states.

The notion of a state machine gave rise to—and gave its name to—the State pattern. In this

pattern, an object can be in exactly one of a fixed number of states, and transition between

them causes changes in the object’s behavior.

The State Pattern
Elegantly manage state transitions without large switches
or numerous if statements.

IAN DARWIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

67

//patterns /

State in an Application
You may have noticed that Java documentation refers to “the state of an object,” meaning the

contents of the instance fields in an object. This is a related meaning of the word state, and in

fact, the two meanings overlap in large applications. The app needs to keep track of the state

it’s in, and that information is typically stored in the state of objects. But there is a very spe-

cific meaning of the term State pattern, as defined in the “Gang of Four” book Design Patterns:

Elements of Reusable Object-Oriented Software, where it was first popularized. The pattern will

“allow an object to alter its behavior when its internal state changes. The object will appear to

change its class.”

Before exploring this definition of the State pattern and its implementation, though, let’s

look at a less-well-structured way to manage the state of a media player. In Figure 1, which is a

simplified representation of the solution I’ll implement, notice that the transitions are labeled

start, stop, pause, and rewind. I could implement those as methods. I’d also need a field to keep

track of what state the object is actually in, using a Java enum. (In older code, you might see a

bunch of final static ints or chars defined to track the state.)

Figure 1: A typical state diagram

Stopped stop

stop start rewind

rewind

Running

Paused

pause

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

68

//patterns /

enum StateName { STOPPED, PLAYING, PAUSED, REWINDING };
StateName currentStateName;

Then, I might define each of the four methods, using logic like the following code. Because lots

of things work only in one or another state, I need to check what state the object is in. So, I end

up with a lot of if statements or a giant switch statement in each method.

public void start() {
 if (currentStateName == StateName.STOPPED) {
 currentStateName = StateName.PLAYING;
 startPlay();
 } else if (currentStateName == StateName.PAUSED) {
 currentStateName = StateName.PLAYING;
 resumePlay();
 } else if (currentStateName == StateName.PLAYING) {
 System.out.println("Already playing!");
 } else if (currentStateName == StateName.REWINDING) {
 System.out.println("Wait a while, OK?");
 }
}

I also need the same amount of conditional code in each of the four methods. This becomes a

serious maintenance issue when you need to add or change functionality. And seriously, who’s

ever worked on a project for a few months and not had to add a feature? If you’re not getting

feature-add requests, you probably have no users!

The State pattern suggests a cleaner way to organize the code. To refactor the previous

approach using the State pattern, I’ll start by creating an interface called State, and make four

instances of it, one for each state the player can be in. First, here’s the interface:

interface State {
 void stop();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

69

//patterns /

 void start();
 void pause();
 void rewind();
 default enterState() {
 // Only some states will need this
 }
}

In Figure 2, I show a generic class diagram for this. The process() method corresponds to the

various processing methods such as stop(), start(), and so on. It is common, but not required,

to provide a method such as enterState() to be called upon entry into the state, to configure

things appropriately.

The class using the State classes is called the Context class, and the State classes are fre-

quently (but not necessarily) written as inner classes inside the Context class. Note that the term

Context class is an important concept in the following explanations.

(By the way, all the code for this article is in my GitHub repository. The file PlayerStateDemo

.java is the one I’m discussing here.)

Figure 2: A typical class diagram in the State pattern

State1
process()State2

process()

<<Context>>
GameStateDemo

state.process()

process()
State
process()

State n
process()

<<State>>

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/IanDarwin/patterns-demos/tree/master/src/main/java/behavioral

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

70

//patterns /

With the State defined, I now define the four states by subclassing. Because the app needs

only one instance of each State class, the classes are instantiated as anonymous classes and

saved as fields.

However, if your program changes state only rarely, you could create the State subclasses as

named classes, configure them in the constructor, and lazily instantiate the State subclass only

when switching into it.

Here is the code for the “Stopped” State subclass, which defines how the various operations

will be performed when invoked while the player is in the stopped state. In this example, stop()

is some low-level hardware control method that might stop a motor moving on a DVD player.

The commented-out setIcon() call symbolizes some update to the GUI.

State stoppedState = new State() {
 @Override
 public void enterState() {
 stop();
 // setIcon(Icon.stopped);
 }

 @Override
 public void stop() {
 // Do nothing - already stopped
 }

 @Override
 public void start() {
 currentState = playingState;
 currentState.enterState();
 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

71

//patterns /

 @Override
 public void pause() {
 // Do nothing - already stopped
 }

 @Override
 public void rewind() {
 currentState = rewindingState;
 currentState.enterState();
 }
 };

The last two statements in rewind() show how an object of the Context class can “appear to

change its class.” Let’s look at the main program’s methods, such as stop() and start():

 PlayerStateDemo context = new PlayerStateDemo();
 System.out.println("Initial state: " + context.getState());
 // User presses the Start button
 context.start();
 System.out.println("Current state: " + context.getState());
 // User presses the Stop button
 context.stop();
 System.out.println("Current state: " + context.getState());

These methods invoke or “delegate to” the current State object’s methods. Just by having a new

value assigned to the currentState variable, the program appears to change its class, because

different code will be invoked from the same method call based on whichever State object is

current. For example, if you call stop() while playing, the player will stop, but if you call the

very same method a second time, it will do nothing, because the first invocation invokes the

stop() method in playingState while the second calls the stop() method in stopState.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

72

//patterns /

In this example, invalid but harmless operations are silently ignored, because that’s how

real media players work. Obviously, there will be some cases where it makes sense to signal

invalid usage—for example, by logging or throwing an exception.

You need to ensure that the variable containing the state can never be null; in my example,

I use a field initialization to ensure that this is set from the beginning:

State currentState = stoppedState;

While this way of doing things may seem like more code than the maze of if statements

shown earlier (in fact it is slightly longer, by line count), it is worthwhile in terms of more-

maintainable code. You can more clearly see what

goes where, and—just as important—the compiler

will probably tell you if you forgot to write a required

method for a particular state, due to the interface

requirement that all methods be implemented.

There are several possible variations to how you

implement the pattern. Depending on the scope of the

application, it might be useful to move the interface

to be a noninner class of the Context, and have the Context class also implement the interface,

so the compiler will check that all the delegation methods are present with the correct argu-

ments and return types. The State classes themselves don’t have to be inner classes at all. If

it made sense, they could be separate, package-level visibility classes; the Context class could

create them. Here, the Context would typically pass a reference to itself into the constructor,

for example:

State shuttingDownState = new ShuttingDownState(this);

This is because the State classes are likely to need access to nonpublic methods and fields in the

Context class.

The State pattern sorts out the
state-specific behavior, making
it easier to read and maintain the code
and easier to add new states.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

73

//patterns /

Client code using the Context class does not need access to the actual State object, and typi-

cally it should not have access, so as to enforce encapsulation. If necessary, the Context class

could provide generic information methods such as isPlaying(), isStopped(), and so on to

export information, where it makes sense, without exporting implementation details. But if you

don’t need or want encapsulation at this boundary, you could have a method such as this in the

Context class:

public State getState() { return currentState; }

For an in-between version (a sort of mild encapsulation), you could use this:

public String getState() { return currentState.getClass().getSimpleName(); }

However, if you have used anonymous classes, note that Class.getSimpleName() returns the

empty string on at least the standard JVM, so use getName().

In this example, I’ve used the State code to perform the transitions. The Context class could

as easily handle the transitions itself. As with all design patterns, it is just a pattern. Therefore,

how you implement it is up to you, as long as you follow the general guidelines.

A Bit of History
The State pattern, like most good patterns, is language-agnostic. I came close to figuring out

this pattern a long time ago in a job far, far away, before there were pattern catalogs. Remember

that patterns are not designed a priori, but are extracted from working code. One weekend

at that long-ago job, I started writing a text-based adventure game in C. I made up a giant C

struct—a data type that foreshadowed Java’s class mechanism—and simply assigned a new one

whenever the player changed locations. Assigning the struct controlled the outcome of opera-

tions such as enter, exit, take, and so on. It had both strings and pointers to functions to handle

behaviors; there was even a preprocessor that took a simple text file (this was long before JSON)

and generated the C files containing the states. The point here is that the State pattern can be

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

74

//patterns /

implemented in C or in most modern procedural languages; it’s certainly not limited to C++

and Java.

I’ve partly re-created this in the file GameStateDemo.java (in the same GitHub repository),

although it doesn’t have the actual room descriptions. The program is just a demo; the game is

playable, but the average time to boredom is on the order of 4.2 seconds. Here is the State class,

which covers actions regarding rooms:

abstract class State {
 public abstract void lookAround();
 public abstract void goInside();
 public abstract void goOutside();
 public void quitGame() {
 display("Goodbye!");
 System.exit(0);
 }
}

This simple version of State does not have an activation method, but it does have quitGame().

In a trivial game, it makes sense to allow the user to exit from any state, so I allow that in the

default quitGame() method. States could override this, too—for example, by prompting users if

they’re holding any valuables or if they want to save the state of the game.

The states in this game are inRoom, inHallway, and so on. Here is the inHallway state:

public State inHallwayState = new State() {
 public void lookAround() {
 display("You are in a hallway. There is a door here");
 }
 public void goInside() {
 display("You are in a room");
 state = inRoomState;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

75

//patterns /

 }
 public void goOutside() {
 display("You are already in the hallway");
 }
};

To see the other states, check out the online codebase.

Conclusion
The State pattern is a good one. It sorts out the state-specific behavior, making it easier to

read and maintain than having a long conditional statement in each method. It’s also easier to

add new states. Finally, it makes the state transitions explicit inside the Context class and the

States—and they can be completely invisible to the outside. Transitions are also atomic, because

only a single variable in the Context class, typically with a name like currentState, is changed on

a transition.

Try the State pattern the next time you find yourself writing parallel if statements in sev-

eral methods, or anytime an object’s behavior has to change significantly based on what state

it’s in. You’ll like the improvement in readability and maintainability that it brings. </article>

Ian Darwin (@Ian_Darwin) has done all kinds of development, from mainframe applications and desktop pub-
lishing applications for UNIX and Windows, to a desktop database application in Java, to healthcare apps in
Java for Android. He’s the author of Java Cookbook and Android Cookbook (both from O’Reilly). He has also
written a few courses and taught many at Learning Tree International.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

76

//fix this /

If you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

ficulty of two different certification tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certified Associate exam, which contains questions for a preliminary level

of certification. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certification test for developers who have been certified at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

Question 1 (intermediate). Given the following code:

public class Calculator {
 public static void main(String[] args) {
 int i = 0;
 Calculator c = new Calculator();
 System.out.print(i++ + c.operation(i));
 System.out.println(i);
 }

 public int operation(int i) {
 System.out.print(i++);
 return i;
 }
}

Answer 1
page 79

Quiz Yourself
More intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

77

//fix this /

What is the result? Choose one.

A.	 121

B.	 123

C.	 234

D.	 345

E.	 Three digits, but the exact values are platform- and implementation-dependent

Question 2 (intermediate). Given this:
public class CustomException extends Exception {}

And this:

public class BadCalculator {
 public static void main(String[] args) {
 try {
 new BadCalculator().divide();
 } catch (Error err) {
 System.out.println("main catch");
 }
 }

 void divide() throws Error {
 try {
 int i = 1 / 0;
 } catch (RuntimeException re) {
 System.out.println("catch");
 throw new CustomException();
 } finally {
 System.out.println("finally");
 }

Answer 2
page 81

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

78

//fix this /

 }
}

What is the result? Choose one.
A.	 catch

finally
main catch

B.	 catch
finally

followed by an exception stack trace
C.	 catch

finally

D.	 Compilation fails.

Question 3 (advanced). Which two of the following statements are true?

A.	 An anonymous class may specify an abstract class as its base type.

B.	 An anonymous class may specify an interface as its base type.

C.	 An anonymous class may specify both an abstract class and an interface as base types.

D.	 An anonymous class can always be replaced with a lambda expression.

E.	 An anonymous class requires a zero-argument constructor for its parent type.

Question 4 (advanced). Given the following code:
public class Car {
 int speed;
 public Car () { speed = 90; }
 abstract void accelerate(int deltaSpeed);
}

And this code:

public class RacingCar extends Car {

Answer 3
page 83

Answer 4
page 85

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

79

//fix this /

 public RacingCar() { speed = 180; }
 public void accelerate(int deltaSpeed) {
 speed += deltaSpeed;
 System.out.println("The new speed is : " + speed);
 }
}

And this code:

Car c = new RacingCar(); // line n2
c.accelerate(50); // line n3

What is the result? Choose one.

A.	 The Car class fails to compile.

B.	 Line n2 fails to compile.

C.	 Line n3 fails to compile.

D.	 The new speed is : 140 is printed.

E.	 The new speed is : 230 is printed.

Answer 1. Option A is correct. This question investigates the evaluation order of expressions and

how values are passed in method calls.

Java Language Specification section 15.7 tells us, “The Java programming language guar-

antees that the operands of operators appear to be evaluated in a specific evaluation order,

namely, from left to right.” Because of this, the result of the calculations must be predictable

and option E must be incorrect.

Answers

Question 1
page 76

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

80

//fix this /

Given that the evaluation order is specified as left to right, you can begin to determine the

behavior. In the first print call, the argument expression is i++ + c.operation(i).

You know from the left-to-right rule that this code must evaluate i++ before making the

call to c.operation(i). Because the value of i prior to this line is zero (due to the unambiguous

initialization two lines prior), the value passed into the call to the operation method will be 1.

Also, the value of i++ used in the calculation will be zero, because the value of a post-increment

expression is the value prior to incrementing the variable.

The first print that executes, and therefore the first to produce output, is actually the last

one in the order of the codebase. That’s the one in the method operation(). You’ve established

that the argument value is 1. The print statement in the operation method prints the value of

the expression i++, which is another post-increment expression. So, the first digit printed will

be 1. This, by itself, means that options C and D must be incorrect.

Next, c.operation returns the value 2 to its caller. This is because the value of i in the call

has been incremented by this point. So, the value 2 is added to the original value of i in the main

method. That value was zero, and remember that with i++, you’re still using the zero value, not

the incremented value. Therefore, the next digit printed will be 2. Unfortunately, this doesn’t

eliminate any other options, so you have to proceed to the final println to decide what the cor-

rect answer is.

The third digit is output by the println that is the last statement in the main method. That

will show the value of i after the i++ operation, which is 1. The call to c.operation did not affect

that value, because Java uses a call-by-value method invocation model. Specifically, this means

that i inside the call to c.operation is a different variable from the one of the same name in the

caller, and the increment that happened inside the operation method does not affect the value

with which you currently are concerned.

So, the final value printed is 1 again, because that is the result of incrementing zero in the

i++ behavior on the left side of i++ + c.operation(i).

As a result, you should see that the total output is 121. That’s sufficient to identify that

option B is incorrect, and the correct answer is option A.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

81

//fix this /

Answer 2. Option D is correct. Typically, the exam creators try to avoid creating questions that

use “compilation fails” in the unqualified manner used in option D. It’s considered too open-

ended to expect a candidate to be absolutely sure that not a single semicolon has been omitted.

(Indeed, there’s a very small, but nonzero, chance that such a trivial syntax error could creep

into a question during production, and then “compilation fails” would be unintentionally cor-

rect.) However, even though an answer such as option D would likely identify a particular line

in the real exam, we are willing to cheat a little in the interest of creating this question for the

purpose of mental exercise. In general, though, “compilation failure” remains a legitimate basis

for a question.

Here, the question is investigating Java’s rules about checked exceptions and the distinc-

tions therein relating to runtime exceptions, regular checked exceptions, and errors.

The background to this is that for years, programmers got themselves into trouble by writ-

ing code that dealt with only the “happy path” and ignored things that might fail. Later, their

customers would complain that the code crashed

in strange ways. Investigation would often show

that something environmental (such as a file not

being found or a network cable being unplugged)

had gone wrong, and the programmers hadn’t

thought about what to do in that situation.

Java’s “declare or handle” rule makes it rather

harder to sweep such unpleasant realities under

the carpet, and it tends to push a programmer to do something about the error path when the

code is first created. We’ve greatly oversimplified the philosophy here, particularly because

we’ve said nothing about how to create good designs using exceptions (and checked exceptions

do nothing to improve poor designs), but the checked exception rule has always seemed like a

really good idea to us.

Philosophy and background aside, the essence of Java’s “declare or handle” rule is that if

any exception might arise that is neither a RuntimeException nor an Error (or a subclass of those,

Question 2
page 77

For years, programmers got
themselves into trouble by writing
code that dealt with only the “happy path”
and ignored things that might fail.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

82

//fix this /

of course), the source code must do something about the problem. The options available in the

“do something” category are to catch the exception or to declare that the method throws the

exception. This suggests that the catch block that prints the message catch would be invoked to

handle the problem of the ArithmeticException that will arise from the division by zero (because

ArithmeticException is a RuntimeException).

But here is where the trouble starts. That catch block then attempts to throw a Custom-

Exception. Given that there is no related catch block for that CustomException (it’s not thrown in

a try block, anyway), the CustomException will propagate out of the method. CustomException is a

subclass of Exception, not a subclass of Error. These two classes are siblings in the class hierar-

chy, as shown in Figure 1.

The divide method declares that it throws Error, not CustomException, and because

CustomException is a checked exception, the “declare or handle” rule has been broken and the

code does not compile. Given this, the correct answer is option D, and options A, B, and C are all

incorrect, because if the code doesn’t compile, it surely doesn’t generate any output.

To cure the problem, a likely approach would be to change the two occurrences of Error (one

in the throw clause of the divide method and the other in the catch block of the main method) to

CustomException. The code in its current form never actually throws an Error, and Error is not a

Figure 1: Class hierarchy

Throwable

ExceptionError

RuntimeException CustomException

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

83

//fix this /

checked exception anyway, so it need not be declared or handled. If these changes were made,

the output would match option A:

catch
finally
main catch

Answer 3. The correct answer is option A and option B. An anonymous class is one for which the

programmer does not specify a name. Instead, the context is such that it’s enough to say “an

object that has this parentage, with these particular features” (where “particular features” are

usually, but not exclusively, overriding/implementing methods).

Because the class does not have a name of its own, the approach is similar to asking a

builder to “make this” while handing over a stack of plans. There’s no need to specify the name

of the thing to be built; it’s to be built “according to these specifications.” Of course, this means

that the declaration and instantiation must be coincident; you clearly cannot refer to this name-

less class by any means other than the code of its class specification.

Anonymous classes have

existed since Java 1.1, and they

were the first syntactic support

for simplifying object creation

in a way that allows focus-

ing the code on what’s deemed

“important”—generally what

the object does—rather than

what might be called “syntactic scaffolding.” In this case, the important aspects are the par-

ent class or interface, the generalization that describes it, and the unique methods of the

implementation.

Another consequence of using an anonymous class is that it reduces clutter in the class

namespace and, consequently, in the documentation space. In a way, this takes the view “who

Question 3
page 78

Lambda expressions have another restriction not
applicable to anonymous classes: an anonymous
class can override (or implement) many methods, but a lambda
expression provides behavior for exactly one method.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

84

//fix this /

cares what it’s called; it just does exactly what it says on the can!”

The syntax of an anonymous class can create an object that is derived from a class (abstract

or concrete) or that implements an interface. Because of this trait, both option A and option B

are correct.

Regardless of whether a class is being extended or an interface is being implemented, if the

parent is called BaseType, the syntax looks like this:

BaseType anon = new BaseType() {
 // implementation specific code here, usually overriding
 // method(s)
}

This syntax, unlike the more general implements clause that may be used when declaring a regu-

lar class, permits only a single base type to be specified. Consequently, option C is incorrect.

If the anonymous class is to serve any useful purpose, some code must be provided in the

body. If BaseType is an interface, it presumably declares an abstract method (or methods) that

must be implemented. If BaseType is a class, you must modify some behavior; otherwise, you

might as well have simply instantiated BaseType directly.

In Java, a constructor is defined using the name of the class that it initializes. If no such

name exists, then clearly no explicit constructor is possible. Despite this, however, the anony-

mous form allows parameters to the construction (for example, new BaseType(1,2)), provided

that those arguments match an existing constructor in BaseType (and, of course, BaseType must be

a class because interfaces do not have constructors).

We mentioned earlier that the anonymous class form can build an object based on a class—

either concrete or abstract—or an interface. A lambda expression, however, can be created only

to implement an interface. Therefore, there are things that anonymous classes can do that

lambdas cannot do, which tells you that option D is incorrect.

In fact, lambda expressions have another restriction not applicable to anonymous classes:

an anonymous class can override (or implement) many methods, but a lambda expression pro-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

85

//fix this /

vides behavior for exactly one method. Further, that method must be one abstract method of

the interface that is being implemented. As a result, it’s clear that anonymous classes still have

a purpose in the language, even with the advent of the lambda syntax.

In the sample syntax, the construction is performed using zero arguments. That mandates

that the parent class—BaseClass in the sample—must have a zero-argument constructor (it

could also have other constructors). However, in the more general case, arguments are per-

mitted, provided that they match an available constructor in the type being extended.

Consequently, option E is incorrect.

Answer 4. Option A is correct. This question investigates abstract classes and methods. A class

may be declared abstract by adding the keyword abstract before the keyword class, like this:

public abstract class MyClass { ...

Java Language Specification section 8.1.1.1 describes abstract classes. There are two key conse-

quences when a class is declared to be abstract. First, creating an instance of that class is pro-

hibited. Subclasses of it may be defined and, provided those classes are not abstract, those sub-

classes can be instantiated. However, you can never have an instance of an abstract class itself.

The second thing that changes is that an abstract class is permitted to declare abstract

methods. Concrete classes (nonabstract ones, if you like) are prohibited from doing this. And

that pinpoints the problem in this question. The Car class is not abstract and, therefore, it is

prohibited from containing an abstract method. As a result, option A is correct and options B, C,

D, and E are incorrect.

If the Car class had been declared abstract, how would things have been different? Immedi-

ately, the Car class would compile successfully. At that point, you have new considerations.

First, is it permitted to create an instance of RacingCar? Yes; absolutely it is. RacingCar at that

point would be a correct and complete concrete class. A concrete class is not permitted to have

any abstract methods, but the accelerate method that’s defined in RacingCar is a correct imple-

Question 4
page 78

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

86

//fix this /

mentation of the abstract method of

the same signature declared in Car. The

implementation is public, where the

abstract method has default access, but

that’s OK. An overriding or implement-

ing method must not be less accessible

than the method it overrides, but it is

fine for it to be more accessible. In other words, there are zero abstract methods in RacingCar, so

line n2 would not cause any problems.

The use of the abstract base class Car as the type of the variable c in line n3 would also be

completely correct. You cannot instantiate an abstract class, but you can use an abstract class

or interface as a variable type, and you can assign objects that are built from subclasses or

implementations to that variable. This kind of generalization is one of the reasons that abstract

classes exist: to allow you to write code in terms of generalizations (the abstract class or inter-

face) that will work correctly with any specialization (that is, with an object created from a con-

crete subclass or implementation). At this point, you can be confident that the code would not

have compilation issues at either line n2 or line n3.

Therefore, if the code with the abstract version of Car would have compiled correctly, how

would it have behaved? To answer this, you need to consider how the construction process

works, and that aspect is fairly simple. The constructors run from the top of the class hierar-

chy (Object) downward. This means that the RacingCar constructor would run after the Car con-

structor. Because of that, the initial value of speed would be 180 rather than 90. (These speeds

are in kilometers per hour, presumably.) If the initial speed is 180, the speed printed after the

accelerate method is called would be 230.

There’s a potentially interesting side discussion about how exam questions are usually

phrased. As a rule, questions are intended to be specific about the line containing the problem

that causes compilation to fail. Recently written questions generally don’t suggest a cause.

You cannot instantiate an abstract class,
but you can use an abstract class or interface as a
variable type, and you can assign objects that are built
from subclasses or implementations to that variable.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

87

//fix this /

In this example, it’s not abundantly clear whether the

“problem” is that there’s an abstract method declared in a con-

crete class or that a nonabstract class surrounds an abstract

method. Of course, the perspective you take on this determines

where you think the error is located: either in public class Car

or in the declaration of the abstract accelerate method.

In its current form, the compiler actually reports the prob-

lem in terms of the class being in error because it fails to provide

concrete implementations for all its methods. However, for this

question, it seemed easier to simply offer the suggestion that

the class doesn’t compile. Such a form isn’t very likely in the

real exam, so be aware that if two separate elements of syntax

are mutually exclusive, you should be ready to consider either of

them as the cause of the problem. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s first Java
classes in the UK. He created the Sun Certified Java Programmer and Sun
Certified Java Developer exams. He wrote several Java certification guides
and is currently a freelance educator who publishes recorded and live video
training through Pearson InformIT (available direct and through the O’Reilly
Safari Books Online service). He remains involved with Oracle’s Java certi-
fication projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus.
During his career, he has helped Oracle with development of Java cer-
tification exams, and he has been a technical reviewer of several Java
certification books, including three editions of the famous Sun Certified
Programmer for Java study guides by Kathy Sierra and Bert Bates.

//java proposals of interest /

This proposal, made in May 2018, puts forth the idea
of deprecating the engine added in Java 8 that provides
application users a way to script inside Java apps. In this
way, Nashorn (pronounced “nas-horn”) provides func-
tionality similar to what Lua provides to C programs.

You might recall that Nashorn was added to Java 8
as a replacement for its slower predecessor, the Rhino
engine. Both products are implementations of the
Java scripting interface, which defines a mechanism
that enables scripting and specifies how data is moved
between the engine and the host Java application.
Although Nashorn and Rhino support JavaScript, script-
ing engines exist for other languages, such as Groovy
and Ruby.

JEP 335 does not propose deprecating the scripting
engine technology, but rather just the JavaScript imple-
mentation. The primary driver is that JavaScript itself
is evolving, and to provide full support for the language
requires considerable developer resources for apps that
might not need the new features. To wit, Nashorn cur-
rently supports the ECMAScript version 5.1. However,
ECMAScript 2016 and 2017 await implementation.

JEP 335 currently is only a proposal. According to the
authors, part of the rationale for this proposal is to see
whether developers outside of Oracle might be inter-
ested in working on Nashorn. In any event, all code that
presently works with Nashorn would continue to do so
for the foreseeable future. More on the status of JEP 335
will be posted as comments are received.

JEP 335: Deprecate the Nashorn
JavaScript Engine

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/335
https://jcp.org/en/jsr/detail?id=223
https://en.wikipedia.org/wiki/ECMAScript

ORACLE.COM/JAVAMAGAZINE  //  JULY/AUGUST 2018

88

//contact us /

Comments
We welcome your comments, correc­
tions, opinions on topics we’ve covered,
and any other thoughts you feel impor­
tant to share with us or our readers.
Unless you specifically tell us that your
correspondence is private, we reserve
the right to publish it in our Letters to
the Editor section.

Article Proposals
We welcome article proposals on all
topics regarding Java and other JVM
languages, as well as the JVM itself.
We also are interested in proposals for
articles on Java utilities (either open
source or those bundled with the JDK).

Finally, algorithms, unusual but useful
programming techniques, and most other
topics that hard-core Java programmers
would enjoy are of great interest to us,
too. Please contact us with your ideas
at javamag_us@oracle.com and we’ll
give you our thoughts on the topic and
send you our nifty writer guidelines,
which will give you more information
on preparing an article.

Customer Service
If you’re having trouble with your sub­
scription, please contact the folks at
java@omeda.com, who will do what-
ever they can to help.

Where?
Comments and article proposals should
be sent to our editor, Andrew Binstock,
at javamag_us@oracle.com.

While they will have no influence on our
decision whether to publish your article
or letter, cookies and edible treats will
be gratefully accepted by our staff at
Java Magazine, Oracle Corporation,
500 Oracle Parkway, MS OPL 3A-3133,
Redwood Shores, CA 94065, USA.

 World’s shortest subscription form
 Download area for code and
other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

