
JULY/AUGUST 2017

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

MIGRATING
FROM JAVA 8
TO JAVA 9

17
NINE NEW
FEATURES
OF JDK 9

11
JSHELL:
THE NEW
REPL

28
ENHANCEMENTS
TO COLLECTIONS,
STREAMS, AND
ITERATORS

21

WHAT’S NEW IN NASHORN 34 | INCUBATING HTTP/2 39 | LANGUAGE QUIZ 47

http://www.oracle.com/javamagazine

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

01

//table of contents /

COVER ART BY I-HUA CHEN

03
From the Editor
The noisy, successful undertaking of

collaborative work: Delays in the delivery

of major releases such as JDK 9 are

common when community is valued.

05
Letters to the Editor
Comments, questions, suggestions,

and kudos

06
Events
Upcoming Java conferences and events

47
Fix This
By Simon Roberts

Our latest code quiz

16
Java Proposals of Interest
JEP 241: Remove the jhat Tool

38
User Groups
The London Java Community

55
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

By Simon Ritter

There’s a lot more to this release than modules.

17
MIGRATING
FROM JAVA 8
TO JAVA 9
By Trisha Gee

Step-by-step

work can lead to

the adoption of

all or some of the

features as you

need them.

21
JAVA 9 CORE
LIBRARY
UPDATES:
COLLECTIONS
AND
STREAMS
By Raoul-Gabriel

Urma and Richard

Warburton

Collections,

Streams, and

iterators have

all added new

capabilities.

28
JSHELL:
READ-
EVALUATE-
PRINT LOOP
FOR THE JAVA
PLATFORM
By Constantin

Drabo

Testing code

snippets is now

part of the JDK.

34
NASHORN
JAVASCRIPT
ENGINE IN
JDK 9
By Jim Laskey

Handy additions

and support

for ES6 make

Nashorn even

more useful.

39
WORKING
WITH THE
NEW HTTP/2
CLIENT
By Gastón Hillar

An incubating

technology in

JDK 9 promises

to make HTTP

communication

a lot simpler.

//table of contents /

11
NINE NEW DEVELOPER

FEATURES IN JDK 9

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

02

EDITORIAL
Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Jim Donahue

Technical Reviewer
Stephen Chin

DESIGN
Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Publication Designer
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING
Associate Publisher and Audience
Development Director
Karin Kinnear +1.650.506.1985

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES
Sales Director
Tom Cometa

Account Manager
Mark Makinney

Mailing-List Rentals
Contact your sales representative.

RESOURCES
Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION
If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION
Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE
java@omeda.com

PRIVACY
Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2017, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

• DevOps, Containers, Microservices & APIs

• MySQL, NoSQL, Oracle & Open Source Databases

• Development Tools & Low Code Platforms

• Open Source Technologies

• Machine Learning, Chatbots & AI

Explore the Latest Developer Trends:

Oracle Code
Register Now

New One-Day, Free Event | 20 Cities Globally

developer.oracle.com/code
Find an event near you:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:thomas.cometa%40sbcglobal.net?subject=
mailto:markmakinney%40hotmail.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://developer.oracle.com/code

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

03

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

This issue of Java Magazine is all about the
release of Java 9. When I was originally laying

out the editorial schedule, this special issue was
assigned to a slot in last year’s lineup. As many of
you know, that intended delivery date was post-
poned until late July of this year, which is why
you have this issue in your hands now. We antici-
pated—with excitement—that this issue and the
Java 9 release would occur simultaneously.

But this happy scenario was thwarted by an
unexpected development: a disagreement within
the Java Community Process (JCP) that pushed the
release back until late September of this year.

For some in the Java community, this post-
ponement and the fact that it came after several

previous delays triggered a great sense of frustra-
tion. Not for me. Sure, I would have loved to have
the release and this magazine come out simulta-
neously, and certainly I would have liked to begin
the transition to the new version with a inal
release of the JDK. Those sentiments, I believe,
are universal in the community.

However, what lets me abide the delay with-
out complaint is that it derives from collaboration
with the community. As anyone who has served
on industry committees can tell you, collaborative
work is diicult, noisy, and supremely frustrat-
ing. There is nothing quite like it, except perhaps
parenting. Yet despite the frustrations, there is a
conviction held by all parties that it is better to

The Noisy, Successful Undertaking
of Collaborative Work
Delays in the delivery of major releases such as JDK 9

are common when community is valued.

#developersrule

developer.oracle.com

Get on the list

for event updates:
go.oracle.com/oraclecoderoadshow

Step up to modern cloud

development. At the

Oracle Code roadshow,

expert developers lead

labs and sessions on PaaS,

Java, mobile, and more.

Level Up at
Oracle Code

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com
http://go.oracle.com/oraclecoderoadshow

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

04

//from the editor /

work through the hard parts of the collabora-
tion than to abandon the efort. We are all
better served by the collaboration than by
insisting on our own preferences.

The understanding of collective beneit
has long driven Java’s history and is indisput-
ably integral to its success. It can be easy to
forget that the development of Java and the
JVM is itself a collaborative efort. The devel-
opment work is done as open source in public
repositories, and the discussions about feature
selection, code implementations, release dates,
and other points of contention are held in pub-
lic mailing lists. In fact, the recent decision
regarding the new release date and the spe-
ciic reasons for the delay were all posted and
replied to on public forums.

Now, let me ask you, do you know of any
other language whose principal corporate
sponsor assigns more than 100 engineers to
work on the language and yet defers on matters
of release date to a community of partners?
There are only three companies outside of
Oracle that have made so large a commitment
to language development: Apple, Google, and
Microsoft. But none of them have adopted this
open, consensual approach. (I’m not here dep-
recating those companies’ work on their lan-

guages or their preferred approach, but rather
I’m trying to underscore how unique Oracle’s
approach with Java is.)

I recognize that my acceptance of delay in
the name of collaboration is borne of an insid-
er’s view of Java community operations. Many
Java developers have no interest in the poli-
tics behind release dates and couldn’t care less
whether discussions are held in public or not;
they just want the new technology to be released
and so are frustrated by the succession of delays.

This perspective is driving an initiative to

make innovations available on a predictable
schedule. This new approach proposes publish-
ing whatever technology is good to go when
the announced date arrives. Georges Saab, vice
president of development for the Java Platform
group at Oracle, states that this new approach
will be adopted in post–Java 9 releases. It will
mean less waiting for a single central feature
to be ready before lesser improvements are
shipped. Ironically enough, this strategy is
possible now because of the modularity in Java 9
that can localize the efects of a given change.

In sum, the delays of this release are the
necessary product of the open, collaborative
model that underlies Java’s success. If you’re a
supporter of open source and open collabora-
tion, then you surely recognize that such delays
are a sacriice that the process demands. In
that sense, it is the antithesis of releasing by
unilateral iat. Nonetheless, I am excited that
modularity makes possible future releases on a
deined schedule while maintaining the com-
mitment to high levels of collaboration.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://jaxenter.com/java-9-jigsaw-georges-saab-interview-134511.html
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

05

//letters to the editor /

Exception Swallowing in Project Lombok
In your excellent May/June 2017 issue, I want to com-
ment on your article “Project Lombok: Clean, Concise
Code,” in which Josh Juneau presents a concise guide
to using Lombok. On page 14, Juneau states, “The
@SneakyThrows annotation can be placed on a method
to essentially ‘swallow’ the exceptions.” I think this
sentence is somewhat misleading. To me the term
swallow means to catch the exception, do nothing
with it, and continue execution of the code.

However, this is far from what Lombok is doing.
From the Lombok site, “Lombok will not ignore, wrap,
replace, or otherwise modify the thrown checked
exception; it simply fakes out the compiler.” This
means we will still get an exception bubbling through
should one occur, but we don’t need to explicitly han-
dle it in calling code, much like runtime exceptions.

—Syed Asghar

Author Josh Juneau responds: “Thanks for sending me

this useful feedback. I am glad that you found the article

useful. I can certainly see why you ind the term swal-
low misleading with respect to the way in which the

@SneakyThrows annotation handles checked exceptions.

I do agree, after reassessing, that this was not an ideal

choice of words. The Lombok @SneakyThrows annotation

allows you to omit a try-catch clause and throw a checked

exception—it does not silently swallow it. Perhaps the

term hides would be more precise, as Lombok hides the

requirement to code a try-catch clause by allowing you

to throw a checked exception without it. As stated in the

Lombok Javadoc, @SneakyThrows does not silently swal-

low, wrap into RuntimeException, or otherwise modify

any exceptions of the listed checked exception types. The

JVM does not check for the consistency of the checked

exception system; javac does, and this annotation lets you

opt out of its mechanism.”

Downloading Java Magazine
Two readers inquired why they could not see the
download icon for Java Magazine when they accessed
the new page. Downloading the PDF version of the
magazine is a subscriber privilege. So you must log
in to access the PDF. As we have increasingly opened
the magazine (making articles available without
login), you might be reading the issue without log-
ging in. To force a login, go to the quiz (which is also a
subscriber-only beneit) and you’ll be asked to log in.
When you do so from a laptop or desktop, you’ll see
the download icon in the right margin.

Contact Us
We welcome comments, suggestions, grumbles, kudos,
article proposals, and chocolate chip cookies. All but
the last two might be edited for publication. If your
note is private, indicate this in your message. Write to
us at javamag_us@oracle.com. For other ways to reach
us, see the last page of this issue.

MAY/JUNE 2017

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

LOMBOK:

ANNOTATIONS FOR

CLEANER CODE

10
DATABASE

ACCESS WITH

STREAMS

34
JDEFERRED’S

ASYNC EVENT

MANAGEMENT

16
BEST PRACTICES

FOR LIBRARY

DESIGN

28

Libraries

MAY/JUNE 2017

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=

06

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

//events /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

JVM Language Summit
JULY 31–AUGUST 2

SANTA CLARA, CALIFORNIA

The JVM Language Summit is an open technical collaboration among lan-
guage designers, compiler writers, tool builders, runtime engineers, and
architects who target the JVM. The schedule consists of a single track of
traditional presentations (about six each day) interspersed with workshop
discussion groups. Each registrant is invited to suggest a few topics of
interest for the workshops.

JCrete
JULY 16–21

KOLYMBARI, GREEECE

This loosely structured “uncon-
ference” involves morning ses-
sions discussing all things Java,
combined with afternoons spent
socializing, touring, and enjoy-
ing the local scene. There is also a
JCrete4Kids component for intro-
ducing youngsters to program-
ming and Java. Attendees often
bring their families.

ÜberConf
JULY 18–21

DENVER, COLORADO

ÜberConf 2017 will be held at the
Westin Westminster in down-
town Denver. Topics include
Java 8, microservice architectures,
Docker, cloud, security, Scala,
Groovy, Spring, Android, iOS,
NoSQL, and much more.

JavaZone 2017
SEPTEMBER 12, WORKSHOPS

SEPTEMBER 13–14, CONFERENCE

OSLO, NORWAY

JavaZone is a conference for
Java developers created by the
Norwegian Java User Group,
javaBin. The conference has
existed since 2001 and now con-

sists of around 200 speakers and
7 parallel tracks over 2 days, plus
an additional day of workshops
beforehand. You will be joined by
approximately 3,000 of your fel-
low Java developers. Included in
the ticket price is a membership
in javaBin.

Strange Loop
SEPTEMBER 28–30

ST. LOUIS, MISSOURI

Strange Loop is a multidisci-
plinary conference that brings
together the developers and
thinkers building tomorrow’s
technology in ields such as
emerging languages, alterna-
tive databases, concurrency,
distributed systems, security,
and the web. Talks are, in gen-
eral, code-heavy, not process-
oriented. A preconference day on
September 28 is optional and not
included in the conference rate.

NFJS Boston
SEPTEMBER 29–OCTOBER 1

BOSTON, MASSACHUSETTS

Since 2001, the No Fluf Just Stuf
(NFJS) Software Symposium Tour
has delivered more than 450
events with more than 70,000
attendees. This event in Boston

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://openjdk.java.net/projects/mlvm/jvmlangsummit/
http://www.jcrete.org/
https://uberconf.com/conference/denver/2017/07/home
https://2017.javazone.no/tickets
https://www.thestrangeloop.com/about.html
https://nofluffjuststuff.com/home/main

07

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

//events /

covers the latest trends within
the Java and JVM ecosystem,
DevOps, and agile development
environments.

JavaOne
OCTOBER 1–5

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned
coder or a new Java programmer,
JavaOne is the ultimate source of
technical information and learn-
ing about Java. For ive days, Java
developers gather from around
the world to talk about upcom-

ing releases of Java SE, Java EE,
and JavaFX; JVM languages; new
development tools; insights into
recent trends in programming;
and tutorials on numerous related
Java and JVM topics.

JAX London
OCTOBER 9–12

LONDON, ENGLAND

JAX London is a four-day confer-
ence for cutting-edge software
engineers and enterprise-level
professionals, bringing together
the world’s leading innova tors

PHOTOGRAPH BY MASSMATT/FLICKR

Oracle Code Events
Oracle Code is a free event for
developers to learn about the
latest development technologies,
practices, and trends, including
containers, microservices and API
applications, DevOps, databases,
open source, development tools and low-code platforms,
machine learning, AI, and chatbots. In addition, Oracle
Code includes educational sessions for developing soft-
ware in Java, Node.js, and other programming languages
and frameworks using Oracle Database, MySQL, and
NoSQL databases.

ASIA PACIFIC
JULY 18, Sydney, Australia

AUGUST 10, Bangalore, India

AUGUST 30, Seoul, South Korea

in the ields of Java, micro-
services, continuous delivery,
and DevOps. Conference ses-
sions, keynotes, and expo happen
October 10–11. Hands-on work-
shops take place the day preced-
ing and the day following the
main conference.

O’Reilly Software Architecture
Conference
OCTOBER 16–18, CONFERENCE

AND TUTORIALS

OCTOBER 18–19, TRAINING

LONDON, ENGLAND

For four days, expert practitio-
ners share new techniques and
approaches, proven best prac-
tices, and exceptional technical

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://www.oracle.com/javaone/index.html
https://jaxlondon.com/
https://go.oracle.com/oraclecode-about
https://conferences.oreilly.com/software-architecture/sa-eu
https://conferences.oreilly.com/software-architecture/sa-eu

08

//events /

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

skills. At this conference, you’ll
hear about the best tools to use
and why, and the efect they can
have on your work. You’ll learn
strategies for meeting your com-
pany’s business goals, developing
leadership skills, and making the
conceptual jump from software
developer to architect.

KotlinConf
NOVEMBER 2–3

SAN FRANCISCO, CALIFORNIA

KotlinConf is a JetBrains event
that provides two days of content
from Kotlin creators and commu-
nity members.

Devoxx
NOVEMBER 6–10

ANTWERP, BELGIUM

The largest gathering of Java
developers in Europe takes place
again this year in Antwerp.
Dozens of expert speakers deliver
hundreds of presentations on
Java and the JVM. Tracks include
server-side Java, cloud, big data,
and extensive coverage of Java 9.

W-JAX
NOVEMBER 6–10

MUNICH, GERMANY

W-JAX is a conference dedicated to

cutting-edge Java and web devel-
opment, software architecture,
and innovative infrastructures.
Experts share their professional
experiences in sessions and work-
shops. This year’s focus is on Java
core and enterprise technologies,
the Spring ecosystem, JavaScript,
continuous delivery, and DevOps.

QCon San Francisco
NOVEMBER 13–15, CONFERENCE

NOVEMBER 16–17, WORKSHOPS

SAN FRANCISCO, CALIFORNIA

Although the content has not
yet been announced, recent
QCon conferences have ofered
several Java tracks along with
tracks related to web develop-
ment, DevOps, cloud computing,
and more.

Are you hosting an upcoming
Java conference that you would
like to see included in this cal-
endar? Please send us a link
and a description of your event
at least 90 days in advance at
javamag_us@oracle.com. Other
ways to reach us appear on the
last page of this issue.

REGISTER NOW

#JavaOne

San Francisco, California

October 1–5, 2017

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://kotlinconf.com/
https://devoxx.be/
https://jax.de/en/
https://qconsf.com/
mailto:javamag_us%40oracle.com?subject=
https://www.oracle.com/javaone/register.html

Written by leading Java experts, Oracle Press books offer the most definitive,

complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,

 7th Edition

Herb Schildt

Revised to cover Java SE 9,

this book gets you started

programming in Java right away.

Java: The Complete

Reference,

10th Edition

Herb Schildt

Updated for Java SE 9, this book

shows how to develop, compile,

debug, and run Java programs.

OCA Java SE 8

Programmer I Exam Guide

(Exam 1Z0-808)

Kathy Sierra, Bert Bates

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam

questions are included.

Rapid Modernization

of Java

Applications

G. Venkat

Adopt a high-performance

enterprise Java application

modernization strategy.

http://www.OraclePressBooks.com

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

10
ART BY I-HUA CHEN

T
his single-topic issue of Java Magazine focuses on the beneits
of the new JDK 9 release other than the Java Platform Module
System (JPMS). The modularity feature, often touted as the
central part of this release, was not yet in inal approved form
when we went to press. So, rather than provide early informa-

tion that might be wrong later, we’ve chosen to focus on the other parts
of JDK 9, which have been formal-
ized and inished and will ship
whenever modules are oicially
approved. At present, that ship-
ping date is expected to be in late
September. The reasons for this
delay are discussed in the edito-
rial (page 3). Shortly after that
date, Java Magazine will dedicate a
second issue to Java 9, with a deep
focus on the new modular archi-
tecture and how best to use it.

As the articles in this issue
demonstrate, there is a lot of
goodness in Java 9 outside of mod-
ules. The language and platform
teams have created dozens of con-
venient new features that make
Java programming more succinct
and enjoyable. Simon Ritter’s

article (page 11) provides an overview of many of these useful additions.
His work is complemented by an in-depth examination (page 21) of the
new features in Collections, Streams, and iterators. Also, Trisha Gee
explains (page 17) how to compile and run Java 8 code on Java 9, even if
you’re not using modules.

An alternative way to run Java 9 code is with JShell, which is a new
read-evaluate-print loop (REPL)
bundled with this release. Our
introduction to JShell (page 28)
shows the basics, while our article
on HTTP/2 (page 39) provides addi-
tional examples of JShell usage.
The HTTP/2 technology, which
facilitates network programming,
is part of a new incubator system
introduced in Java 9 that presents
developers with technologies that
are likely to be bundled in future
releases. If you regularly use HTTP,
take a long look at this article.

In addition to these articles, we
also have our usual language quiz,
events calendar, and letters to the
editor. Enjoy, and let us know if
there are other Java 9 topics you’d
like us to cover in the future.

Inside JDK 9
JAVA 9

JAVA 9 FEATURES 11 | FROM JAVA 8 TO JAVA 9 17 | COLLECTIONS AND STREAMS 21 | JSHELL 28 | HTTP/2 39

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

11

//java 9 /

The big new feature in JDK 9 is the Java Platform Module
System coupled with the introduction of the modular JDK.

However, there are plenty of other new features in JDK 9, and
in this article, I focus on nine that are of particular interest
to developers. Where applicable, I’ve included the relevant
JDK Enhancement Proposal (JEP) number so you can ind
more information.

Factory Methods for Collections (JEP 269)
Collections provide a well understood way for you to gather
together groups (I was going to say sets, but that could be a
bit misleading) of data items in your applications and then
manipulate the data in a variety of useful ways.

At the top level, there are interfaces that represent the
abstract concepts of a List, Set, and Map.

The problem, until now, has been that Java doesn’t pro-
vide a simple way to create a collection with predeined data.
If you want a collection to be structurally immutable (that is,
you can’t add, delete, or change references to elements), you
need to do more work.

Let’s look at a simple example using JDK 8:

List<Point> myList = new ArrayList<>();

myList.add(new Point(1, 1));

myList.add(new Point(2, 2));

myList.add(new Point(3, 3));

myList.add(new Point(4, 4));

myList = Collections.unmodifiableList(myList);

It’s not terrible, admittedly, but to create an immutable list
of four Points required six lines of code. JDK 9 addresses this
through factory methods for collections.

This feature makes use of a change introduced in JDK 8
that enabled static methods to be included in interfaces. That
change means that you can add the necessary methods at
the top-level interfaces (Set, List, and Map) rather than hav-
ing to add them to a large group of classes that implement
those interfaces.

Let’s rewrite our example using JDK 9:

List<Point> list =

 List.of(new Point(1, 1), new Point(2, 2),

 new Point(3, 3), new Point(4, 4));

The code is now much simpler.
The rules that apply to the use of the diferent collections

also apply (as you would expect) when using these factory
methods. So, you cannot pass duplicate arguments when you
create a Set, nor can you pass duplicate keys when you create
a Map. A null value cannot be used as a value for any collec-
tion factory method. The Javadoc documentation provides full
descriptions of how the methods may be called. [Collections

SIMON RITTER

PHOTOGRAPH BY BOB ADLER/

THE VERBATIM AGENCY

Nine New Developer Features
in JDK 9
There’s a lot more to this release than modules.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

12

//java 9 /

are discussed further in the article “Java 9 Core Library
Updates: Collections and Streams” (page 21). —Ed.]

Optional Class Enhancements
The Optional class was introduced in JDK 8 to reduce the
number of places where a NullPointerException could be
generated by code (and it was frequently used to make the
Stream API more robust).

JDK 9 adds four new methods to Optional:
■■ ifPresent(Consumer action): If there is a value present,

perform the action using the value.
■■ ifPresentOrElse(Consumer action, Runnable emptyAction):

Similar to ifPresent, but if there is no value, it executes the
emptyAction.

■■ or(Supplier supplier): This method is useful when you
want to ensure that you always have an Optional. The
or() method returns the same Optional if a value is
present; otherwise, it returns a new Optional created by
the supplier.

■■ stream(): Returns a stream of zero or one elements,
depending on whether there is a value.

Stream API Enhancements
It’s always useful to be able to create a stream source from a
collection of data, and JDK 8 provided several methods to do
this outside the Collections API (BufferedReader.lines(), for
example). Several new sources are being added in JDK 9, such
as java.util.Scanner and java.util.regex.Matcher.

JDK 9 adds four methods to the Stream interface.
First, there are two related methods: takeWhile(Pred-

icate) and dropWhile(Predicate). These methods are
complementary to the existing limit() and skip() meth-
ods, but they use a Predicate rather than a ixed integer
value. The takeWhile() method continues to take elements
from the input stream and pass them to the output stream
until the test() method of the Predicate returns true. The

dropWhile() method does the
opposite; it drops elements from
the input stream until the test()
method of the Predicate returns
true. All remaining elements of
the input stream are then passed
to the output stream.

Be careful when using either
of these methods when you have
an unordered stream. Because
the predicate needs to be sat-
isied only once to change the
state of elements being passed
to the output, you might get elements in the stream that
you don’t expect, or you might miss ones you thought you
would get.

The third new method is ofNullable(T t), which returns
a stream of zero or one elements, depending on whether the
value passed is null. This can be very useful to eliminate a
null check before constructing a stream, and it is similar in a
sense to the new stream() method in the Optional class dis-
cussed in the previous section.

The last new stream method is a new version of the
static iterate() method. The version in JDK 8 took one
parameter as the seed and created an ininite stream as
output. JDK 9 adds an overloaded method that takes three
parameters, which efectively gives you the ability to repli-
cate the standard for loop syntax as a stream. For example,
Stream.iterate(0, i -> i < 5, i -> i + 1) gives you a
stream of integers from 0 to 4.

Read-Eval-Print Loop: jshell (JEP 222)
JDK 9 includes a new read-eval-print loop (REPL) command-
line tool, jshell, that allows you to develop and test Java code
interactively, unlike when you use an IDE, where code must
be edited, compiled, and then run. Developers can quickly

JDK 9 includes a
new read-eval-
print loop (REPL)
command-line tool,
jshell, that allows you to
develop and test Java
code interactively.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

13

//java 9 /

prototype sections of code as jshell
continually reads user input, eval-
uates it, and prints either the value
of the input or a description of the
state change the input caused.

To make the tool easier to
use, it includes features such as
an editable history, tab comple-
tion, automatic addition of termi-
nal semicolons when needed, and
conigurable predeined imports
and deinitions. It is also possible
to declare variables whose type is
deined after the declaration (but
this is still not dynamic typing: once the type is set, it can’t
be changed).

There is even a module, jdk.jshell, that can be used if
you want to build your own “snippet” evaluation tool.

One of the most signiicant reasons for including a REPL
in the JDK is to make it easier to use Java as a teaching lan-
guage, lowering the amount of boilerplate code new develop-
ers need to write before they get results.

Concurrency Updates (JEP 266)
Java 5 introduced concurrency utilities to simplify writing
Java code that has multiple cooperating threads. Subsequent
releases have improved these features by adding things such
as the fork/join framework in JDK 7 and, most recently, paral-
lel streams in JDK 8. Now, JDK 9 provides enhancements for
concurrency in two areas.

The irst is a reactive streams publish-subscribe frame-
work. Processing streams of elements in an asynchronous
fashion can lead to problems when the rate at which elements
are submitted to the processing code rises sharply. If the pro-
cessor is unable to handle the load, the element supplier can
be blocked or a bufer overlow situation can occur.

Reactive streams use a publish-subscribe model in which
the stream processor (the subscriber) subscribes to the sup-
plier of elements (the publisher). By doing this, the supplier
knows how many elements it can pass to the processor at any
time. If the supplier needs to send more than this number,
it can use techniques such as local bufering or it can use an
alternative processor (this is a typical microservice approach
that delivers horizontal scalability by spinning up new ser-
vice instances to handle increased load).

JDK 9 includes a new class, Flow, that encloses several
interfaces: Flow.Processor, Flow.Subscriber, Flow
.Publisher, and Flow.Subscription. A Subscription is
used to link a Publisher with a Subscriber.

The Subscription interface contains two methods:
■■ cancel(): This method causes the Subscriber to stop

receiving messages (eventually).
■■ request(long n): Add n elements to the number that the
Subscriber is able to process. This method can be called
repeatedly as the Subscriber processes elements and is
ready to process more.

By implementing the Processor interface, a class can act as
both a publisher and a subscriber, thereby acting as an inter-
mediate operation in the stream.

The second new concurrency feature in JDK 9 consists
of enhancements to the CompletableFuture class, which was
introduced in JDK 8. Several new methods relate to adding
time-based functionality. These enhancements enable the
use of time-outs via methods such as completeOnTimeout(),
delayedExecutor(), and orTimeout(). Other new methods
include failedFuture() and newIncompleteFuture().

Milling Project Coin (JEP 213)
One of the most signiicant changes in JDK 7 was Project
Coin, which was a set of small language changes to smooth
out some of the common tasks developers undertake repeat-
edly in Java. The project included things such as the ability to

The introduction
of private methods
in interfaces will
allow common code
to be extracted to
methods that will
remain encapsulated
within the interface.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

14

//java 9 /

use Strings as constants in switch statements. JDK 9 builds on
this and adds a few more small changes to the language syn-
tax of Java:

■■ Efectively inal variables can be used in try-with-resources
without being reassigned. Currently, each resource that
is used must be assigned to a new variable, even if that
resource has already been deined in the method. With this
change, it is now possible to use an existing variable (as
long as it is efectively inal) without reassigning it. Here is
an example of the change:

try (Resource r = alreadyDefinedResource) ...

In JDK 9, it becomes this:

try (alreadyDefinedResource) ...

■■ Private methods can be used in interfaces. Interfaces
changed in a big way in JDK 8. First, there was the introduc-
tion of default methods, which allowed new methods to be
added to existing interfaces without forcing a break in back-
ward compatibility. Because this meant that behavior could
be included in an interface (giving Java multiple-inheritance
of behavior for the irst time), it was also logical to include
static methods. In JDK 9, the introduction of private meth-
ods in interfaces will allow common code to be extracted to
methods that will remain encapsulated within the interface.

■■ The diamond operator can be used with anonymous classes.
One of the things included in JDK 8 and now JDK 9 is better
type inference. Being able to use lambda expressions with-
out explicitly specifying the types of parameters is a good
example of this. This ability required a substantial rewrite
of how the Java compiler processes type inference, and the
diamond operator change in JDK 9 makes use of that com-
piler change. The problem, as it existed before, was that
using the diamond operator with an anonymous class could

result in a type being inferred
that is not denotable. A type
that is not denotable can be
represented by the compiler,
but it cannot be expressed to
the JVM using the class signa-
ture attribute. In JDK 9, it is now
possible to use the diamond
operator with an anonymous
class as long as the inferred type is denotable, for example:

List<String> myList = new ArrayList<>() {

 // Overridden methods

};

■■ A single underscore will no longer be valid as an identiier.
I often ask, during Java 9 presentations, if anyone has ever
used a single underscore as a variable name and, thank-
fully, few people have. The reason for doing this is that in a
later release of the JDK (presumably JDK 10), it will be valid
to use a single underscore as a variable name only in lambda
expressions. This makes sense. You could use a single
underscore if your lambda expression takes only one argu-
ment and you don’t use the argument in the body of the
lambda, for example:

_ -> getX()

(For those of you who like the idea of underscores as vari-
able names, you can still use two or more as an identiier.)

■■ Extended use of the @SafeVarargs annotation is allowed.
Currently, this annotation can be used only on constructors,
static methods, and inal methods, none of which can be
overridden. Because a private method cannot be overridden
by a subclass, it is logical also to enable private methods to
use this annotation.

The ProcessHandle
interface identifies
and provides control of
native processes.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

15

//java 9 /

Spin-Wait Hints (JEP 285)
This is a small change because it adds only a single method,
but its addition to the Thread class is signiicant. The other
interesting aspect of this feature is that it is the irst JEP to be
included that was proposed by a company other than Oracle
(in this case, Azul Systems).

The onSpinWait() method provides a hint to the JVM that
the thread is currently in a processor spin loop. If the JVM and
hardware platform support optimizations when spinning,
such hints can be used; otherwise, the call is ignored. Typical
optimizations include reducing thread-to-thread latencies
and reducing power consumption.

Variable Handles (JEP 193)
One of the most signiicant changes in JDK 9 caused by mod-
ularizing the core JDK libraries is the encapsulation of the
internal APIs by default. Probably the most well known of
these is sun.misc.Unsafe. To make some of the functionality
of this private API available through a public API, JDK 9 intro-
duces the VarHandle class.

Variables are used in Java all the time. They are implicit
pointers to areas of memory that hold values. A variable han-
dle is a typed reference to a variable (so for those who’ve used
C and C++, it’s efectively a pointer to a pointer).

In order to get a reference to a VarHandle, you use the
MethodHandle.Lookup class that has been extended in JDK 9.
You can retrieve references to
either static or nonstatic vari-
ables, as required, as well as
to arrays.

Once you have a VarHandle,
you can execute low-level
memory ordering operations on
the variable it references. This
capabil ity allows you to per-
form atomic operations, such as

compare-and-set operations, but without the performance
overhead that is associated with using the equivalent classes
and methods of the java.util.concurrent.atomic package.

You can also use a VarHandle to “fence” operations, giv-
ing you ine-grained control over the memory ordering of
operations such as read and write or store and load. This can
be useful in situations where you don’t want the Java compiler
or JVM to reorder operations, which is often done to optimize
the performance of code paths.

Process API Updates (JEP 102)
JDK 9 contains enhancements to the Process and
ProcessBuilder classes and introduces a new ProcessHandle
interface. ProcessBuilder now includes the method
startAsPipeline(). As the name suggests, this method
constructs a UNIX-style pipeline of processes using a list of
ProcessBuilders. As each process is started, its standard out-
put is connected to the standard input of the next process.

Here’s a simple example that pipes the output of the
UNIX/Linux ls command on /tmp through wc –l to get a
count of the number of iles in the tmp directory:

 ProcessBuilder ls = new ProcessBuilder()

 .command("ls")

 .directory(Paths.get("/tmp").toFile());

 ProcessBuilder wc = new ProcessBuilder()

 .command("wc", "-l")

 .redirectOutput(Redirect.INHERIT);

 List<Process> lsPipeWc = ProcessBuilder

 .startPipeline(asList(ls, wc));

The ProcessHandle interface identiies and provides control of
native processes. It provides methods to retrieve information
about a process, such as the process ID as well as any child
and descendant processes. Also, there is a static method that
returns an Optional<ProcessHandle> for a given process ID.

With features such
as these, you should
consider migrating
your development to
this release ASAP.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

16

//java 9 /

The subinterface ProcessHandle.Info provides a range
of process-speciic details, such as the command line used to
start the process, when the process started, and the identity
of the user that started the process.

The Process class has seven new methods that pro-
vide access to more information about the native process.
Some of these overlap with those available through the
ProcessHandle:

■■ children() and descendants(): Lists the process’s children
or dependents, respectively

■■ getPid(): Returns the ID of the given process
■■ info(): Returns a snapshot of information as a Process
Handle.Info instance

■■ onExit(): Is a CompletableFuture that can be used to per-
form tasks when the process terminates

■■ supportsNormalTermination(): Determines whether
destroy() terminates the process normally

■■ toHandle(): Returns the ProcessHandle of this process

Conclusion
As you can see, there are many useful and powerful new
features included in JDK 9 that are particularly targeted at
developers. With features such as these, you might want to
consider migrating your development to this release as soon
as you can. </article>

Simon Ritter (@speakjava) is the deputy CTO of Azul Systems.

He has been in the IT business since 1984 and holds a BS in phys-

ics from Brunel University in the UK. He joined Sun Microsystems

in 1996 and spent time working in both Java development and

consultancy. Ritter has been presenting Java technologies to

developers since 1999, focusing on the core Java platform as well

as client and embedded applications.

//java proposals of interest /

The release of JDK 9 contains lots of goodies, as this
issue of Java Magazine has reported in detail. However,
due to the approval of JDK Enhancement Proposal 241
(JEP 241), the jhat heap analysis tool will no longer be
bundled. jhat originally made its way into the JDK with
the release of Java 6. It came from a project called HAT
and was a part of the now defunct javatools projects
before its incorporation into the JDK.

Despite its inclusion in recent releases of the JDK,
it was always categorized as an experimental tool and
labeled as such in all oicial documentation. Over the
years, other heap proilers have surpassed it, and so jhat
has been in an extended decline with little maintenance
being accorded to it.

If you’re still using jhat, you should consider other
tools. Two worthy options are VisualVM and, at a pro-
grammatic level, the Java HotSpot Serviceability Agent
API. The latter is thoroughly explored and documented
in the book Java Performance Companion, which was
reviewed in the September/October 2016 issue.

Standalone commercial oferings are also available,
notably JProiler and YourKit. In addition, leading IDEs
today bundle tools that enable you to examine the JVM
heap in developer-friendly ways.

One way or the other, you should be able to ind
good substitutes for jhat.

JEP 241: Veteran Tool jhat
Reaches Retirement

FEATURED JDK ENHANCEMENT PROPOSAL

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/241
https://visualvm.github.io/features.html
http://www.javamagazine.mozaicreader.com/SeptOct2016#&pageSet=12&page=0
http://www.ej-technologies.com/products/jprofiler/overview.html
https://www.yourkit.com/java/profiler/features/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

17

//java 9 /

This article shows the steps you take to run Java 8 code and
use some of the new features of Java 9 without migrating

to modules. I principally examine what you need to do to get
the code compiling and running.

Getting Started
First, download and install the latest version of JDK 9. At the
time of this writing, it is still an Early Access release and can
be found here (in this article, I’m using build 9-ea+166).

Until the impact of Java 9 on your system is under-
stood, you probably don’t want it to be
the default Java version. So, instead
of updating $JAVA_HOME to point to
the new installation, you might want
to create a new environment variable,
$JAVA9_HOME, instead. I’ll be using this
approach throughout this article.

You should also look at this detailed
migration guide to get a feel for what
steps might be needed.

Before Jumping In
You can determine the amount of efort
that might be required to migrate to
Java 9 without even downloading or
using it. There are several tools avail-
able in Java 8 that will give you appro-
priate hints.

Compiler warnings. First, of course, you can look at any com-
piler warnings, because some of those will tell you about
potential problems (see Figure 1).

I’m using my IDE, IntelliJ IDEA, to compile the code and
to show me the warnings, but what you see in the messages
box in Figure 1 is the same as what you’d see using javac from
the command line. Other IDEs, such as NetBeans and Eclipse,
will have similar functionality. In Figure 1, you can see that
the code has a ield with a single underscore as a name. This
single-underscore name has been removed as a legal identi-

TRISHA GEE

PHOTOGRAPH BY JOHN BLYTHE

Migrating from Java 8 to Java 9
Step-by-step work can lead to the adoption of all or some of the features even without using modules.

Figure 1. Example compiler warning about a potential problem

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://jdk.java.net/9/
https://docs.oracle.com/javase/9/migrate/
https://bugs.openjdk.java.net/browse/JDK-8061549

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

18

//java 9 /

ier name in Java 9 as part of JDK Enhancement Proposal (JEP)
213. This is because underscores might be used in a later ver-
sion of Java to make working with lambda expressions even
easier. If you come across identiier names that consist of
only a single underscore, you’ll need to rename them. Note
that names containing underscores, for example _fieldName,
are still valid; the problem is identiier names that contain
only an underscore and nothing else.
Identify problematic dependencies with jdeps. One of the goals
of this release, and surely the most famous Java 9 feature,
is to allow the JDK developers to hide internal implementa-
tion details. In the past, developers were expected to follow
guidelines to reduce the risk of depending on an unsupported
class in the JDK; but it’s much better if a language, frame-
work, or library can hide things that developers shouldn’t
use. To make sure your code isn’t using internal APIs that will
be hidden in Java 9, you can use a tool called jdeps.

Figure 2 shows where my compiled classes live in my
project.

Many tutorials suggest you use jdeps with a JAR ile, but
you can also use it with your class iles. For my application,

I navigate to the location of my class iles via the command
line (Figure 2 shows that this is %PROJECT%\%MODULE%\build\
classes) and from there, I run jdeps with the -jdkinternals
lag. I’m using Windows, so my command line is the fol-
lowing, where main is the name of the directory containing
my classes:

> %JAVA_HOME%\bin\jdeps -jdkinternals main

When I run this command, I get the output in Figure 3.
These messages indicate that my TwitterOAuth class

is using the internal classes sun.misc.BASE64Encoder and
sun.misc.Unsafe. The output suggests a replacement for the
encoder, java.util.Base64, which was a new class in Java 8.
unsafe is a special case, because there is no suitable replace-
ment for all of its functionality yet.

JEP 260 talks about which internal APIs are going away
and which will remain accessible. Java team member Mark
Reinhold provided the following summary in an email to one
of the principal JDK mailing lists to explain how each API will
be handled by the Java team:

Figure 2. Location of compiled classes
in the project Figure 3. Output from running jdeps

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://bugs.openjdk.java.net/browse/JDK-8061549
http://openjdk.java.net/jeps/302
http://openjdk.java.net/jeps/302
http://www.oracle.com/technetwork/java/faq-sun-packages-142232.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jdeps.html
http://openjdk.java.net/jeps/260

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

19

//java 9 /

■■ If it has a supported replacement in JDK 8, then we will
encapsulate it in JDK 9.

■■ If it does not have a supported replacement in JDK 8, then
we will not encapsulate it in JDK 9, so that it remains acces-
sible to outside code.

■■ If it has a supported replacement in JDK 9, then we will
deprecate it in JDK 9 and encapsulate it, or possibly even
remove it, in JDK 10.

Compiler warnings and jdeps can show you areas in your code
that might be problematic in Java 9 and even suggest solu-
tions. These problems can be ixed while you’re still run-
ning with an earlier version of Java (provided the suggested
replacement classes are available in that version), and doing
so will ease your transition to Java 9.

Running with Java 9
The migration guide I mentioned earlier suggests running
your application with Java 9 before recompiling or making
any other changes. One place you might want to do this test-
ing is in a continuous integration (CI) environment: you can
use the artifacts built with your current version of Java but
run the application and its tests
with Java 9.

However, at the time of this
writing, many of the common CI
servers and some build tools, such
as Gradle, do not yet fully support
Java 9. If your project uses Maven,
a few CI servers, such as TeamCity,
will be able to compile or run your
code with Java 9. But because the
JDK and JRE were restructured as
part of Java 9, some tools will need
to be updated to work correctly.

You should ind out which CI
server and build tool your team

uses, and determine whether they and the related parts of the
toolchain presently support running with Java 9.

Compiling with Java 9
If you followed my previous advice, compiling with Java 9
should be simple. In my code, if I compile with Java 9 without
ixing those errors identiied in Figure 1 and Figure 3, I will get
the two errors I was expecting: one error stating I cannot use
underscore as a ield name and one that shows I can no longer
access BASE64Encoder. Both of these are straightforward to
ix. For the irst, I rename the ield. For the second, I import
java.util.Base64 and replace the following old line of code:

String encodedString =

 new BASE64Encoder().encode(bytes);

with this:

String encodedString =

 Base64.getEncoder().encodeToString(bytes);

The use of sun.misc.Unsafe won’t give me an error or warn-
ing (at this point), because it’s still accessible in Java 9. See
“Removed or Changed APIs” for more examples of changes
that might afect your code.

The external libraries my application depends on all work
with Java 9, so after I apply the two ixes above, everything
compiles and runs as expected. However, you might ind
that some of the libraries you’re using aren’t compatible with
Java 9. There is a list of major open source libraries that have
been testing with Java 9. If you have a problem with a library,
you should check whether there is an updated version of the
library that supports Java 9.

Unexpected Behavior
Java 9 contains several changes that might afect your appli-

Java 9 contains
several changes
that might afect
your application;
some might not
cause compilation
errors but instead
will demonstrate
diferent behavior.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2qOuYww
https://wiki.openjdk.java.net/display/quality/Quality+Outreach

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

20

//java 9 /

cation; some might not cause compilation errors but instead
will demonstrate diferent behavior. The migration guide
mentioned earlier covers these changes. Here’s a summary of
some of the changes that might afect you. I’ve listed them as
links with the associated JEP number, so you can look up any
of them if they become suspects in what you perceive to be
behavioral changes.

■■ JEP 231: Remove Launch-Time JRE Version Selection
■■ JEP 240: Remove the JVM TI hprof Agent
■■ JEP 241: Remove the jhat Tool
■■ JEP 260: Encapsulate Most Internal APIs
■■ JEP 289: Deprecate the Applet API
■■ JEP 298: Remove Demos and Samples
■■ JEP 214: Remove GC Combinations Deprecated in JDK 8
■■ JEP 248: Make G1 the Default Garbage Collector
■■ JEP 271: Uniied GC Logging
■■ JEP 158: Uniied JVM Logging
■■ JEP 223: New Version-String Scheme
■■ JEP 245: Validate JVM Command-Line Flag Arguments

Conclusion
In this article, I have examined how to port Java 8 code to
Java 9, without getting into the question of modularity. This
explanation is intended for readers who want to use many of
the innovations in Java 9 discussed here and in the accompa-
nying article by Simon Ritter, “Nine New Developer Features
in JDK 9.” [As this issue goes to press, modules have not been
inalized by the Java Community Process, so coverage of
working with modules will appear in a forthcoming issue of
Java Magazine. —Ed.] </article>

Trisha Gee is a Java Champion with expertise in Java high-per-

formance systems. She is a leader of the Seville Java User Group

(SVQJUG) and dabbles in open source development. Gee is the

IntelliJ IDEA developer advocate for JetBrains.
#developersrule

developer.oracle.com

Trials. Downloads. Tutorials.

Start here: developer.oracle.com

The Oracle Developer Gateway is the best place

to jump-start modern cloud development. With

free trials of PaaS and IaaS, documentation galore,

piles of downloads, and tutorials for leveling up

your skills, it’s the resource of choice for developers

working in Java, mobile, enterprise apps, and more.

The Best Resource
for Modern Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://openjdk.java.net/jeps/231
http://openjdk.java.net/jeps/240
http://openjdk.java.net/jeps/241
http://openjdk.java.net/jeps/260
http://openjdk.java.net/jeps/289
http://openjdk.java.net/jeps/298
http://openjdk.java.net/jeps/214
http://openjdk.java.net/jeps/248
http://openjdk.java.net/jeps/271
http://openjdk.java.net/jeps/158
http://openjdk.java.net/jeps/223
http://openjdk.java.net/jeps/245
http://developer.oracle.com
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

21

//java 9 /

Java 9 introduces many reinements to Java 8 fea-
tures, such as Streams, Collectors, Optional, and

CompletableFuture, as well as enhancements to the Collec-
tions API. This article focuses on using the new features
in Collections, Streams, and Collectors. In the next
issue, we will focus on reliability using Optional and
CompletableFuture.

Collection Factories
Java 9 adds a set of new factory methods to the Collections
Framework. Let’s start by looking at the problem these
methods are trying to solve, by instantiating a list with a
few String values:

List<String> values = new ArrayList<>();

values.add("Java 9");

values.add("is");

values.add("here");

Let’s face it: this is bulky for such a simple and common
thing to do. We admit that this isn’t the only way to instan-
tiate a List though. Arrays.asList() has been around since
before Java 5, and it originally took just an array. In Java 5, it
was converted to accept varargs and is in common use.

List<String> values =

 Arrays.asList("Java 9", "is", "here");

This is a helpful improvement. The List returned by Arrays
.asList() is a little strange, however. If you try to add an
element to the List, it’ll throw an UnsupportedOperation
Exception. You might think that is OK—after all, it’s a List
that cannot be mutated. Not so fast: it’s actually a list that
wraps an array. So the set() operation will modify the
backing array and, in fact, if you hold onto the array that is
wrapped, it can be modiied. If you want to create a Set or a
Queue, you are out of luck as well; there’s no Arrays.asSet().
The normal way to solve this problem is to use the Collection
constructor overload:

Set<String> values =

 new HashSet<>(Arrays.asList(

 "Java 9", "is", "here"));

Again, this is fairly verbose. Note that some programming
languages ofer a feature to solve this problem by adding
collection literals to the programming language. This gives
you some syntax that instantiates a collection from speciic
values. Here’s an example in Groovy:

RAOUL-GABRIEL URMA

AND
RICHARD WARBURTON

Java 9 Core Library Updates:
Collections and Streams
Collections, Streams, and iterators have all added new capabilities.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

22

//java 9 /

def values = ["Hello", "World", "from", "Java"] as Set

One solution to implementing this is to provide some meth-
ods that construct collections from values and then use a
varargs constructor to make them syntactically shorter, simi-
lar to collection literals. This is the approach used in Java 9,
so you can do the following, which is a lot more concise:

List<String> list =

 List.of("Java 9", "is", "here");

Set<String> set =

 Set.of("Hello", "World", "from", "Java");

Maps now also have similar factory methods. They work dif-
ferently because Maps have keys and values rather than a sin-
gle type of element. For up to 10 entries, Maps have overloaded
constructors that take pairs of keys and values. For example,
you could build a map of people and their ages, like this:

Map<String, Integer> nameToAge

 = Map.of("Richard", 49, "Raoul", 47);

The varargs case for Maps is a little bit harder: you need to
have both keys and values, but in Java, methods cannot have
two varargs parameters. Therefore, the general case is han-
dled by taking a varargs method of Map.Entry<K, V> objects
and adding a static entry() method that constructs them:

Map<String, Integer> nameToAge =

 Map.ofEntries(entry("Richard", 49),

 entry("Raoul", 47));

The goal here isn’t just to reduce verbosity; it is also to reduce
the possibility of programmer errors. All the collections added
in recent years have banned the use of nulls as elements
within collections, and these collections follow suit. This helps

reduce the scope for bugs related to referring to null values in
collections. It also simpliies the internal implementation.

A bigger diference, compared to most collections in the
JDK, is that these collections are immutable. Immutability
reduces the scope for bugs by removing the ability for one
part of an application to cause problems by modifying state
that another component is relying on. Immutability is a con-
cept that has been advocated by functional programming for
a long time. Speaking of functional programming, let’s look
at the updates to the Streams API in Java 9.

Streams
Streams were a great addition to Java 8. The code that devel-
opers write using streams tends to read a lot more like the
problem they are trying to solve, and less code is usually
required. Java 9 brings some small improvements to streams.
ofNullable. The Stream interface has a pair of factory methods
called of() that allow you to create streams from prespeciied
values: one is an overload for a single value, and the other
takes a varargs parameter. These are very useful when you’re
trying to test streams code and when you want to just instan-
tiate a stream with a few values. Java 9 adds an ofNullable()
factory. Let’s see how you might use this functionality.

Let’s suppose you’re trying to ind a location where
you can put some coniguration iles in a Java application.
You want to use a couple of diferent properties: let’s say
app.config and app.home. Let’s write this code in Java 8:

String configurationDirectory =

 Stream.of("app.config", "app.home", "user.home")

 .flatMap(key -> {

 final String property =

 System.getProperty(key);

 if (property == null)

 {

 return Stream.empty();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

23

//java 9 /

 }

 else

 {

 return Stream.of(property);

 }

 })

 .findFirst()

 .orElseThrow(IllegalStateException::new);

That’s a little ugly. What’s going on here? The code is look-
ing up each property in the Stream and using the flatMap
operation. flatMap is used here because it allows you to map
an element to zero or one elements in the Stream. If you can
look up the system property, a Stream is returned contain-
ing only it, but if you can’t look it up, an empty Stream is
returned in its place, which results in no element being added
to the Stream.

Unfortunately, a large statement-style lambda expres-
sion with a null check is in the middle of the code. One alter-
native would be to use a ternary operator:

String configurationDirectory =

 Stream.of("app.config", "app.home", "user.home")

 .flatMap(key -> {

 String prop = System.getProperty(key);

 return prop == null ? Stream.empty() :

 Stream.of(property);

 })

 .findFirst()

 .orElseThrow(IllegalStateException::new);

Even after this refactoring, however, the code reads slightly
inelegantly. The Java 9 ofNullable would allow you to write
the same pattern much more succinctly and readably:

String configurationDirectory =

 Stream.of("app.config", "app.home", "user.home")

 .flatMap(key ->

 Stream.ofNullable(System.getProperty(key)))

 .findFirst()

 .orElseThrow(IllegalStateException::new);

takeWhile and dropWhile. Suppose you have an application that
is processing payments being made on an ecommerce website
and you’re maintaining a list of all payments for the current
day that are sorted from the largest down to the smallest.
You have a business requirement to produce a report on every
payment that is £500 or greater at the end of the day. A natu-
ral way of writing this code using Java 8 Streams might be:

List<Payment> expensivePayments = paymentsByValue

 .stream()

 .filter(transaction ->

 transaction.getValue() >= 500)

 .collect(Collectors.toList());

Unfortunately, the downside of this approach is that if you
start processing many transactions in a day, the filter
operation is applied to every transaction in your input list.
You know that your input list is sorted by descending value
of the transaction, so once you have found a transaction that
fails your predicate, every transaction after that point can be
iltered out. If your list of transactions grew to be very large,
this would take an increasing amount of time to complete
and incur unnecessary ineiciency. Java 9 solves this problem
with the addition of the takeWhile operation.

List<Payment> expensivePayments = paymentsByValue

 .stream()

 .takeWhile(transaction ->

 transaction.getValue() >= 500)

 .collect(Collectors.toList());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

24

//java 9 /

While filter retains all elements in the Stream that match
its predicate, takeWhile stops once it has found an element
that fails to match. The dropWhile operation does the inverse:
it throws away the elements at the start for which the predi-
cate is false.

So far, we’ve talked about streams that have a deined
order: an encounter order. The order of a stream can be deined
at its source. For example, if you’re streaming from a list of
values, the order in the list is the encounter order. It is also
possible to have Stream operations that introduce an encoun-
ter order into their pipeline, for example, sorted(). Most,
but not all, of the practical use cases of takeWhile() and
dropWhile() rely upon their input streams having a deined
encounter order.

One use case for applying takeWhile() on an unordered
stream is if you want to be able to stop the Stream operation.
For example, perhaps you have a Stream operation that may
operate on an ininite stream, processing all the data in it, but
you want to be able to stop the Stream when your application
shuts down or a user needs to cancel the stream pipeline. You
can do this with a takeWhile() operation that reads from a
piece of external state, such as a volatile boolean lag. When
you want to stop the stream pipeline, you simply set the state
to false.
iterate. A related update is the introduction of an alterna-
tive iterate() method for creating streams. The vintage
iterate method from Java 8 takes an initial value and a func-
tion that provides the next value in the stream. Look at the
following example:

IntStream.iterate(3, x -> x + 3)

 .filter(x -> x < 100)

 .forEach(System.out::println);

This code prints all the numbers that are divisible by 3 and
less than 100. It starts with 3, which is divisible by 3, and adds

3 on every iteration. It then ilters to ensure that the numbers
are less than 100 and uses a method reference to print the
resulting numbers. It looks straightforward, but if you run it,
you’ll ind that there’s a big problem. Go on: try it!

That’s right: the program never terminates. It keeps
adding 3 in a loop ininitely. That’s because there’s no way
to know in the ilter that the numbers continue to increase.
You can solve that problem with the new version of iterate
in Java 9, which takes a predicate as its second argument that
indicates at what point to stop iterating up. So, rewrite the
code as follows:

IntStream.iterate(3, x -> x < 100, x -> x + 3)

 .forEach(System.out::println);

It now stops running after it has printed the number 99. The
sample code here used the IntStream interface because it was
operating on primitive int values, but the iterate() methods
appear on both the primitive and regular Stream interfaces.
Streams weren’t added on their own in Java 8; they came with
a powerful Collectors class that has also been improved in
Java 9, as discussed next.

Collectors
Collectors were another important addition to Java 8. Collec-
tors let you specify data processing queries by aggregating
the elements of a Stream into various containers such as
Map, List, and Set. For example, you can create a map of the
sum of expenses for each year by using the groupingBy and
summingLong collector from the Collectors class. In the rest of
this article, assume that there are static imports when a static
method is referred to from the Collectors class.

Map<Integer, Long> yearToSum

 = purchases.stream()

 .collect(groupingBy(Expense::getYear,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

25

//java 9 /

 summingLong(Expense::getAmount));

So what’s new in Java 9? In Java 9, two new Collectors have
been added to the Collectors utility class: Collectors
.filtering and Collectors.flatMapping.

We will show you how to use the new iltering and lat-
Mapping functionality with a running example used through-
out the rest of the article. Here are the Expense and Tag class
deinitions we use.

public class Expense {

 private final long amount;

 private final int year;

 private final List<Tag> tags;

 public Expense(long amount, int year,

 List<Tag> tags) {

 this.amount = amount;

 this.year = year;

 this.tags = tags;

 }

 public long getAmount() {

 return amount;

 }

 public int getYear() {

 return year;

 }

 public List<Tag> getTags() {

 return tags;

 }

}

public class Tag {

 private final String content;

 public Tag(String content) {

 this.content = content;

 }

}

Collectors.filtering. Let’s revisit the example at the start of the
“Collectors” section and say that you now need to build a map
of the list of expenses for each year but only for expenses that
are higher than £1,000.

From the immediately preceding discussion, you already
know how to generate a Map of the list of expenses for each
year, as follows:

Map<Integer, List<Expense>> yearToExpenses =

 purchases.stream()

 .collect(groupingBy(Expense::getYear));

So, you could add a ilter to the streams, as follows:

Map<Integer, List<Expense>> yearToExpenses =

 purchases.stream()

 .filter(expense ->

 expense.getAmount() > 1_000)

 .collect(groupingBy(Expense::getYear));

Unfortunately, this means that if all the expense amounts for
a certain year were below £1,000, the resulting map would not
contain an entry for that year (that is, no key and no value).

Instead, you can use the iltering collector, as follows,
which would preserve the year in the resulting Map and pro-
duce an empty list. This would be a confusing thing in our
report for a user to read. Is a given year missing because there
is some missing data, or is it simply a software bug? We want
to make it clear that there are no entries that meet their ilter

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

26

//java 9 /

criteria in a given year and thus return an empty list.

Map<Integer, List<Expense>> yearToExpensiveExpenses =

 purchases.stream()

 .collect(

 groupingBy(

 Expense::getYear,

 filtering(expense ->

 expense.getAmount() > 1_000,

 toList())));

flatMapping. The flatMapping collector is the big brother of
the mapping collector. Let’s say you need to produce a map
of years with a set of tags from the expenses for each year. In
other words, you need to produce Map<Integer, Set<Tag>>.

A irst attempt might look like this:

expenses.stream()

 .collect(

 groupingBy(

 Expense::getYear,

 mapping(Expense::getTags, toSet())));

Unfortunately, this query will return a Map<Integer,
Set<List<Tag>>>.

By using flatMapping, you can latten the intermediate
Lists into a single container. The flatMapping collector takes
two arguments: a function from one element to a Stream of
elements and a downstream collector to collect the single
lattened stream into a container. With this, you can solve the
query, as follows:

Map<Integer, Set<String>> =

 expenses.stream()

 .collect(

 groupingBy(

 Expense::getYear,

 flatMapping(expense ->

 expense.getTags().stream(),

 toSet())));

Note that the flatMapping collector is related to the flatMap
method from the Stream API. That method takes a function
producing a Stream of zero or more elements for each ele-
ment in the input Stream. The result is then lattened into a
single Stream.

Conclusion
Java 9 adds new goodies to improve patterns by introducing
new operations to Collections, Streams, and Collectors. These
additions help you write code that reads closer to the prob-
lem statement and is easier to understand. Often when there
are major new releases, developers focus only on the lag-
ship features, but in practice, many developer productivity
improvements can be found in the enhancement features of
recent releases. Java 8 was a fantastic release, and Java 9 now
makes some common patterns even simpler to use. </article>

Raoul-Gabriel Urma (@raoulUK) is the CEO and cofounder of

Cambridge Spark, a leading learning community for data scientists

and developers in the UK. He is also chairman and cofounder of

Cambridge Coding Academy, a community of young coders and

students. Urma is coauthor of the bestselling programming book

Java 8 in Action (Manning Publications, 2015). He holds a PhD in

computer science from the University of Cambridge.

Richard Warburton (@richardwarburto) is a software engineer,

teacher, author, and Java Champion. He is the author of the best-

selling Java 8 Lambdas (O’Reilly Media, 2014) and helps devel-

opers learn via Iteratr Learning and at Pluralsight. Warburton has

delivered hundreds of talks and training courses. He holds a PhD

from the University of Warwick.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

https://devoxx.be

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

28

//java 9 /

JShell, a new read-evaluate-print loop (REPL), will be
introduced in JDK 9. Motivated by project Kulla (JEP 222),

JShell is intended to provide developers an API and an interac-
tive tool that evaluates declarations, statements, and expres-
sions of the Java programming language.

In this article, I present a brief overview of JShell, explain
its use, and demonstrate its beneits for developers.

Overview
JShell is a new tool in JDK 9 that ofers a basic shell for Java
that uses a command-line interface. It is also the irst oicial
REPL implementation for the Java platform, even though this
concept has existed in many languages (for example, Groovy
and Lisp) and in Java third-party tools (such as Java REPL and
BeanShell). So, it is not a new language, nor is it an IDE or a
new compiler for Java.

JShell acts like a UNIX shell: it reads the instructions,
evaluates them, prints the result of the instructions, and then
displays a prompt while waiting for new commands. It is built
around several core concepts—snippets, state, wrapping,
instruction modiication, forward references, and snippet
dependencies—that I’ll explain.

How to Run JShell
In order to run JShell, you need to download and install the

latest Early Access preview build for JDK 9 for your environ-
ment. Then, set your JAVA_HOME environment variable
and run java -version to verify your installation. The out-
put of the command should show something similar to the
following:

java version "9-ea"

Java(TM) SE Runtime Environment (build 9-ea+173)

Java HotSpot(TM) 64-Bit Server VM...

To run JShell, type jshell at the command line:

[pandaconstantin@localhost ~]$ jshell

| Welcome to JShell -- Version 9-ea

| For an introduction type /help intro

When the prompt is available, you can get help on several
useful commands by typing /help at the command line.
Figure 1 shows the partial output from that command, with
many of the principal commands explained succinctly.

To understand how JShell works, let’s look at a few code
snippets. A snippet is an instruction that uses standard Java
syntax. It represents a single expression, statement, or decla-
ration. The following is a simple snippet. The text below the
command is JShell output:

JShell: Read-Evaluate-Print Loop
for the Java Platform
Testing code snippets is now part of the JDK.

CONSTANTIN DRABO

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

29

//java 9 /

System.out.println("My JShell snippet");

My JShell snippet

(In my examples in this article, the characters in blue indicate
text entered at the command line into JShell, and the result-
ing output is shown in black monospace.)

Like Java code, JShell allows you to declare variables,
methods, and classes:

int x, y, sum

x ==> 0

y ==> 0

int sum ==> 0

x = 10 ; y = 20 ; sum = x + y;

x ==> 10

y ==> 20

sum ==> 30

System.out.println("Sum of " + x + " and " + y +

 " = " + sum);

Sum of 10 and 20 = 30

Here’s an example of a valid class, which I use later:

class Student {

private String name ;

private String classRoom ;

private double grade ;

public Student() {

}

public String getName() {

return name ;

}

public void setName(String name) {

this.name = name ;

}

public String getClassRoom() {

return classRoom ;

}

/list [<name or id>|-all|-start]]

 list the source you have typed

/edit <name or id>

 edit a source entry referenced by name or id

/drop <name or id>

 delete a source entry referenced by name or id

/save [-all|-history|-start] <file>

 Save snippet to a source file.

/open <file>

 open a file as source input

/vars [name or id|-all|-start]

 list the declared variables and their values

/methods [name or id|-all|-start]

 list the declared methods and their signatures

/types [name or id|-all|-start]

 list the declared types

/imports

 list the imported items

/exit

 exit the jshell

/history

 History of what you have typed

/!

 Re-run last snippet

Figure 1. Partial list of JShell commands

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

30

//java 9 /

public void setClassRoom(String classRoom) {

this.classRoom = classRoom ;

}

public double getGrade() {

return grade ;

}

public void setGrade(double grade) {

this.grade = grade ;

}

}

created class Student

The indentation looks diferent than in Java, because this code
was typed at the JShell command line. Some normal Java state-
ments are not needed at this initial declaration. For example,
JShell automatically imports many typical packages. In our
example, the following imports were done automatically:

import java.io.*

import java.math.*

import java.net.*

import java.nio.file.*

import java.util.*

import java.util.concurrent.*

import java.util.function.*

import java.util.prefs.*

import java.util.regex.*

import java.util.stream.*

At any given point, you can see the already imported pack-
ages with the /import –all command listed earlier.
State. Each statement in JShell has a state. The state deines
the execution status of snippets and of variables. It is deter-

mined by results of the eval() method of the JShell instance,
which evaluates code. There are seven status states:

■■ DROPPED: The snippet is inactive.
■■ NONEXISTENT: The snippet is inactive because it does not

yet exist.
■■ OVERWRITTEN: The snippet is inactive because it has been

replaced by a new snippet.
■■ RECOVERABLE_DEFINED: The snippet is a declaration

snippet with potentially recoverable unresolved references
or other issues in its body.

■■ RECOVERABLE_NOT_DEFINED: The snippet is a declara-
tion snippet with potentially recoverable unresolved refer-
ences or other issues. (I discuss the diference between this
and the previous state shortly.)

■■ REJECTED: The snippet is inactive because it failed com-
pilation upon initial evaluation and it is not capable of
becoming valid with further changes to the JShell state.

■■ VALID: The snippet is a valid snippet.
When a snippet is not declared, it is considered inactive
and not part of the state of the JShell instance nor is it vis-
ible to the compilation of other snippets. At this stage, it is a
NONEXISTENT snippet.

If the snippet is submitted to the eval() method and
there are no errors, it becomes part of the state of the JShell
instance and the status is VALID. Querying JShell gives
isDefined == true and isActive == true.

In the case where the signature of the snippet is valid
but the body contains issues or unresolved references, the
status is RECOVERABLE_DEFINED and a JShell query states
isDefined == true and isActive == true.

If the signature of the snippet is wrong and the body
also contains issues or unresolved references, the snippet’s
status is RECOVERABLE_NOT_DEFINED and the status is
isDefined = false even though the snippet stays active
(isActive == true).

A snippet becomes REJECTED when compilation fails,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

31

//java 9 /

and it is no longer a valid snippet. This is a inal status and
will not change again. At this stage, both isDefined and
isActive are false. You can also deactivate and remove a
snippet from the JShell state with an explicit call to the
JShell.drop(jdk.jshell.PersistentSnippet) method. At
that point, the snippet status changes to DROPPED. This is
also a inal status and will not change in the future.

Sometimes a snippet type declaration matches another
one. In this case, the previous snippet is inactive and it
is replaced by the new one. The status of the old snippet
becomes OVERWRITTEN and the snippet is no longer visible
to other snippets (isActive == false). OVERWRITTEN is also
a inal status.

Using JShell from a Program
The JDK ofers APIs to developers to access JShell program-
matically rather than by using the REPL. The code below cre-
ates an instance of JShell, evaluates a snippet, and provides
the status of the instructions.

import java.util.List;

import jdk.jshell.*;

import jdk.jshell.Snippet.Status;

public class JShellStatusSample {

 public static void main(String... args) {

 //Create a JShell instance

 JShell shell = JShell.create();

 //Evaluate the Java code

 List<SnippetEvent> events =

 shell.eval("int x, y, sum; " +

 "x = 15; y = 23; sum = x + y; " +

 "System.out.println(sum)");

 for(SnippetEvent event : events) {

 //Create a snippet instance

 Snippet snippet = event.snippet();

 //Store the status of the snippet

 Snippet.Status snippetstatus =

 shell.status(snippet);

 if(snippetstatus == Status.VALID) {

 System.out.println("Successful ");

 }

 }

 }

}

The result of the execution of this code is

Successful

Successful

Successful

Wrapping
You are not obliged to declare variables or deine a method
within a class. Classes, variables, methods, expressions, and
statements evolve within a synthetic class (as an artiicial
block). You can deine them in the top-level context or within
a class body, as you wish. Also, if you’re a person who prefers
concision, you can at times skip using semicolons.

String firstName , lastName

firstName ==> null

lastName ==> null

String concatName(String firstName,

String lastName) {

return firstName + lastName ;

}

| created method concatName(String,String)

The following code shows the declaration of variables and a
method in the top-level context. As discussed previously, you

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

32

//java 9 /

cannot modify classes at the top level; however, as seen in
the following code, you can modify methods within classes.

class Person {

private String firstName ;

private String lastName ;

public String concatName(String firstName,

String lastName) {

return firstName + lastName;

}

}

| created class Person

Because each statement or expression is created in its own
unique namespace, modiications can be applied at any time
without disturbing the overall functioning of the code.

Forward References and Dependencies
Within the body of a class, you can refer to members that will
be deined later. During evaluation of the code, the references
produce errors. But because JShell works sequentially, the
issue can be resolved by writing the missing member before
actually calling the snippets.

When a snippet A depends on a second snippet B, any
changes in snippet B are immediately propagated in A. Then,
if the dependent snippet is updated, the main snippet is also
updated. If the dependent snippet is invalid, the main snippet
becomes invalid.

If you declare variables and then initialize them, you can
see them by using the list command, for example:

String firstname;

firstname ==> null

String lastname;

lastname ==> null

double grade;

grade ==> 0.0

String getStudentFullName(String fn, String ln) {

return fn + " " + ln ; }

| created method getStudentFullName(String,String)

firstname = "Wolfgang";

firstname ==> "Wolfgang"

lastname = "Mozart";

firstname ==> "Mozart"

System.out.println("Hello " +

getStudentFullName(firstname,lastname));

Hello Wolfgang Mozart

The output of the list command shows the following:

1 : String firstname ;

2 : String lastname ;

3 : double grade ;

4 : String getStudentFullName

(String firstname, String lastname) {

 return firstname + " " + lastname ;

 }

5 : firstname = "Wolfgang" ;

6 : lastname = "Mozart" ;

7 : System.out.println("Hello" +

getStudentFullName(firstname,lastname));

The numbers in the output are the snippet identiiers. They
are useful for manipulating a snippet (editing, dropping,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

33

//java 9 /

and so on). You can also list all the variables, methods, and
classes that are in the code. Here’s an example of listing all
the variables:

/vars

| String firstname = "Wolfgang"

| String lastname = "Mozart"

| double grade = 0.0

If you decide to change the values of variables or edit a spe-
ciic snippet, you run /edit with the snippet identiier,
for example:

/edit 6

A dialog box, as shown in Figure 2, appears to allow you to
modify the value.

If I use the editor to change lastname to my last name, I
get the following result response:

lastname ==> "Drabo"

If I change the irstname to my irst name, then I can rerun
the print-out function by simply referring to the snippet
identiier, in this case, #7:

/7

System.out.println("Hello" +

getStudentFullName(firstname, lastname));

Hello Constantin Drabo

You can use the /save command to save your snippets to
a ile, and the /open command allows you to open and run
the ile:

/save StudentName.jsh

/open StudentName.jsh

Hello Wolfgang Mozart

Hello Constantin Drabo

JShell also ofers some keyboard shortcuts. You can obtain the
navigation history by using the up and down arrow keys. And
you can use the tab key to show you the options you have for
the text you’ve typed so far—a kind of IntelliSense feature.

Conclusion
JShell has many possible uses. The irst is for beginners to try
out Java code without having to write a full program. In this
sense, it is a terriic learning tool. It’s also a great tool for try-
ing out small functions, validating that a web service is avail-
able and seeing what it returns, and so on. In addition, it’s an
excellent tool for trying out some quick layouts in JavaFX.

Whether it is used from the command line or program-
matically, JShell is likely to become one of the most widely
used features of JDK 9. </article>

Constantin Drabo is a software engineer living in Burkina Faso.

He is a NetBeans Dream Teamer and a Fedora Ambassador for

the Fedora Project. Drabo is also the founder of FasoJUG, the irst

Java user group in Burkina Faso (the former Upper Volta).

[This article is a substantially updated version of the JShell 9
tutorial that appeared in the July/August 2016 issue. —Ed.]

Figure 2. The built-in snippet editor

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

34

//java 9 /

Nashorn, the JDK’s built-in JavaScript engine, has under-
gone a variety of improvements in this new release.

Before diving into those enhancements, let me briely set the
context for these changes so that their addition makes the
most sense.

Background
When I started the development of Nashorn in late 2010, I was
just looking for a way to experiment with the newly minted
invokedynamic (JSR 292) byte-code instruction. The JVM
team later adopted Nashorn as a test bed for invokedynamic,
and the Nashorn Project drove much of the performance
improvements made to the invokedynamic implementation.

While this was going on, the Java group was discussing
how JavaScript would likely grow to dominate client-side
development and that integrating JavaScript with Java would
be a critical element of the client/server equation. Rhino—an
open source implementation of JavaScript from the Mozilla
Foundation that was then the JDK ofering for JavaScript—
was getting long in the tooth, and further development was
winding down. In November 2012, JDK Enhancement Proposal
(JEP) 174, “Nashorn JavaScript Engine,” was approved, which
enabled work to begin in earnest to provide a fresh, robust,
secure, full-featured implementation of ECMAScript-262
Edition 5.1 (ES5) to run on the Java platform.

Initially, Nashorn found a home in a wide variety of
applications, such as app servers, JavaFX applications, utili-
ties, shell scripts, embedded systems, and so on.

Nashorn continues to have broad usage, but its use
appears to have settled into three main areas:

■■ The development of JavaScript applications that can be
run on both the client and the server. In the JavaScript
world, this is known as isomorphic development. The advan-
tages are huge for smaller shops that want to build front
ends for both desktop and mobile services—a single pro-
gramming language with a common codebase and rapid
delivery. Isomorphic development also scales well for
larger systems.

■■ Runtime adaptive or dynamic coding. The term I like to use
is soft coding, where portions of an application can be modi-
ied after the application/server is deployed. This capability
is used for everything from stored procedures in databases
to application coniguration management.

■■ Shell scripting. This consists of using JavaScript in areas
where bash or Python would traditionally be used.

There is often a lot of debate about Nashorn’s performance on
the JVM compared to native JavaScript performance on plat-
forms such as Google’s V8. Nashorn starts out slower because
it translates the JavaScript to bytecode. After that, Nashorn is
at the mercy of HotSpot to deliver native code. This approach
works well for long-running server applications but not as
well for small and run-once scripts. The main reason we
developed Nashorn in the irst place was to run JavaScript
and Java together seamlessly. Most Nashorn applications do a
great job of orchestrating JavaScript and Java, something that
V8 was not designed to do.

JIM LASKEY

Nashorn JavaScript Engine in JDK 9
Handy additions and support for ES6 make Nashorn even more useful.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

35

//java 9 /

ES6 Support
The most important issue for JavaScript developers doing
isomorphic development is the need to have client/server
source code compatibility. With most browsers adopting
ECMAScript 6 (ES6) as the standard level of language sup-
port for JavaScript, it was essential to bring Nashorn in line.
While the Nashorn team didn’t have time to deliver the com-
plete ES6 feature set for the JDK 9 release, more ES6 features
will follow in future updates. To activate ES6 support, use
--language=es6 on the command line.
New keywords. Here is what you’ll ind initially: the imple-
mentation of the new keywords, let and const, follow ES6
block scoping, with const creating an immutable local. For
backward compatibility, var retains its ES5.1 semantics:

const a = 10;

a = 20; // TypeError trying to set a constant

let x = 10;

{

 let x = 20; // different scope

 print(x); // prints 20

}

print(x); // prints 10 from the outer scope

Support for symbols. Symbols are string-like objects intro-
duced in ES6. They are primitives that are compared by ref-
erence instead of by value. This makes every symbol unique,
which enables developers to create private object properties.

// a new, unique symbol

let unique = Symbol('optionalName');

myobj[unique] = 'foo';

// a shared symbol for the given name

let shared = Symbol.for('name');

myobj[shared] = 3;

The irst example creates a distinct symbol, which can be
used to create a property that is private to the current scope.
The second example shows how symbols can be shared
(interned) across an entire context. ES6 uses shared symbols
to deine iterators and default toString functions. Symbol-
keyed properties are not exposed to any relective operations.
New iterator protocol. ES6 provides a new protocol for iterating
over objects:

// assign an iterator function to the

// Symbol.iterator property

myobj[Symbol.iterator] = function() {

 return {

 next: function() { ... }

 }

};

// Iterate over myobj using a for..of statement

for (let id of myobj) {

 print(myobj[id]);

}

Note the introduction of for..of loops. Nashorn’s syntax
for each will still be available, but the team recommends
switching to for..of even though they are functionally
equivalent.
New collections. New collection classes were added in ES6 and
in Nashorn: Map and Set. These collection classes implement
the new iterator protocol.

let map = new Map();

map.set('foo', 'bar');

map.get('foo'); // -> 'bar'

map.clear();

map.get('foo'); // -> undefined

The weak reference versions of Map and Set have also been

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

36

//java 9 /

implemented; WeakMap and WeakSet. An entry in one of these
collections is removed by the garbage collector when the entry
value is no longer referenced by any other variable or object.
Templates. Templates are a new form of string literals using
back-ticks as delimiters, which allow embedded expressions
and multiline strings. Nashorn also supports ES6 “tagged”
strings rendered by a function.

// Multiline string

'string text line 1

 string text line 2'

// Embedded expression

'string text ${expression} string text'

// Rendered by function "tag"

tag 'string text ${expression} string text'

Note that in –scripting mode, back-ticks are still used for
$EXEC expressions.
Binary and octal numbers. Finally, there is a new syntax for
binary and octal number literals.

// Binary number literal

0b111110111 === 503

// Octal number literal

0o767 === 503

In addition to these features from ES6, new capabilities
enhance Nashorn’s usefulness.

JavaScript Parsing API
In JDK 9, Nashorn’s Parser API has been expanded to include
full ES6 syntax support. The following example shows how to
parse a JavaScript sample:

// load parser.js from Nashorn resources

//// Load the parser library

// Sample script containing an ES6 class declaration

var script = "class XYZ {}";

// Parse the script and build an abstract syntax tree

var json = parse(script);

// Convert the abstract syntax tree to JSON and print

print(JSON.stringify(json, undefined, 4));

The result is the following JSON output:

{

 "type":"Program",

 "body":[

 {

 "type":"VariableDeclaration",

 "declarations":[

 {

 "type":"VariableDeclarator",

 "id":{

 "type":"Identifier",

 "name":"XYZ"

 },

 "init":{

 }

 }

]

 }

]

}

The Parsing API can also be used to analyze code or inject
instrumentation, and so ofers a developer lots of lexibil-
ity. NetBeans uses this API to handle most of its JavaScript
functionality.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

37

//java 9 /

$EXEC 2.0
One of the most popular features of Nashorn is the ability
to fork processes with a simple back-tick expression. This
unusual capability enables developers to create shell scripts
written in JavaScript.

var listing = `ls –l`;

In this example, listing will contain the output string from
the ls –l command.

The back-tick expression is just shorthand for a call
to the function $EXEC. That is, `ls –l` is shorthand
for $EXEC('ls -s').

$EXEC in JDK 9 is greatly improved over the previous
version. You can now pass in an array of strings for the irst
argument, which allows you to pass arguments containing
special characters, such as spaces.

$EXEC(["/bin/echo", "my.java", "your java"]);

The $EXEC function now has a throwOnError property that, if
set to true, will raise a RangeError if the command fails. It is
still possible to check the $EXIT global to check the status of
the command.

$EXEC.throwOnError = true

`javac my.java`

<shell>:1 RangeError:

 $EXEC returned non-zero exit code: 2

[The last two lines appear as a single line. —Ed.] It is possible
to better manage command I/O operations with standard
redirection directives as command arguments.

$EXEC("echo 'my argument has spaces' > tmp.txt");

It is also possible to override stdin, stdout, and stderr by
passing input and output streams as the last three $EXEC
arguments.

Multiple commands can be issued by using semicolons or
new lines.

$EXEC(<<EOD);

echo this ; echo that

echo whatever you want

EOD

Or, you can pipe the results of commands to the next com-
mand using the vertical bar symbol.

$EXEC("echo 'my argument has spaces' | cat");

Finally, you can change the values of environment variables
on the ly with pseudo cd, setenv, and unsetenv built-in
commands.

$EXEC("setenv PATH ~/bin:${ENV.PATH}; mycmd");

$EXEC("cd ~/bin; ls -l");

jjs as a REPL
The release of Nashorn with JDK 8 introduces a new
command-line tool: Java JavaScript (jjs). jjs made it easier
for developers to test out Nashorn features and to launch
JavaScript applications without writing Java code.

With JDK 9, jjs has replaced its input and output API with
jline2, a new library for handling console input. This change
means that developers can use all the standard controls that
are expected when they are using a shell:

■■ Left and right arrows to move through the input and an
option arrow to jump past symbols

■■ Forward and backward deletion capability

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jline/jline2

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

38

//java 9 /

■■ Ctrl-k to delete the rest of a line and Ctrl-y to restore
the line

■■ Up and down arrows to scroll through the input history
■■ Tab completion to expand globals, properties, and Java types
■■ VT100 escape sequences to format the screen

With all these small changes, life is made a little bit easier.

Performance
In JDK 9, optimistic type optimization is on by default, which
means that, over time, the performance of code on Nashorn
improves as stronger typing is determined by the engine.

function f(array, i) {

 return array[i] + array[i + 1];

}

In the example above, Nashorn will initially optimize the
function f assuming that i and the contents of array are
integers (because of the plus sign.) If it turns out that these
assumptions are not correct, Nashorn will create a new edi-
tion of the function with the actual type used and hot-swap
the old code with the newer version. This optimization is
specialized per call site, so the best solution is always used.

Conclusion
We’ve seen here that the Nashorn engine in JDK 9 provides
many convenient new features. This summary covers what’s
new in this release, but the team has a lot more in the pipe-
line that it hopes to show you soon. </article>

Jim Laskey (@wickund) is a senior development manager in the

Java Platform group at Oracle. Laskey has been a compiler-runtime

developer since the mid-1970s and has worked at Symantec,

Apple, and Azul Systems.

//user groups /

THE LONDON JUG
The London Java Com-
munity (LJC), also known
as the LJC JUG (@ljcjug),
comprises developers in
Europe and in the interna-
tional scene. The LJC was
created in 2006 when Barry
Cranford from the London
Java recruitment irm
RecWorks sought to bring
together like-minded Java

developers for sharing knowledge and skills. Since then, the
LJC has grown to more than 6,000 members.

From the early days, the LJC had the good fortune to have
leaders such as Zoe Slattery, Ben Evans, Martijn Verburg,
Simon Maple, John Stevenson, Trisha Gee, and many other
seasoned Java developers.

The LJC has been actively involved with the Java Com-
munity Process (JCP) and has won the 11th Duke’s Choice
Award and co-won the JCP Member of the Year honor.

With help and support from staf from RecWorks, the LJC
organizes three to four events every month. One of these is
a regular hack day called HackTheTower, where participants
gather in groups hacking on OpenJDK, doing projects in Scala
or Clojure or working independently on pet projects. The LJC
also runs the annual Open Conference (UnConf) and supports
Devoxx UK and Devoxx4Kids every year. These conferences
involve close cooperation between the LJC and other JUGs in
the UK, such as those in Bristol and Manchester, England.

In addition, LJC members share homegrown libraries and
frameworks, answer questions on the mailing list, and par-
ticipate in JUG-organized projects such as Adopt-a-JSR and
Adopt OpenJDK. If you think that sounds fun, join up!

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.meetup.com/Londonjavacommunity/
https://www.meetup.com/Londonjavacommunity/
https://twitter.com/ljcjug
https://twitter.com/bcrecworks
https://twitter.com/bcrecworks
http://hackthetower.co.uk/
https://sites.google.com/site/ljcopenconference/
https://www.meetup.com/Londonjavacommunity/messages/archive/
https://java.net/projects/adoptajsr/pages/Home
https://java.net/projects/adoptopenjdk/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

39

//java 9 /

Java 9 introduces a new HTTP client API deined in Java
Enhancement Proposal (JEP) 110 that implements HTTP/2

and WebSocket. This new HTTP client is included as an
incubator module, and its goal is to replace the legacy Http-
URLConnection API. In this article, I explain how to work
with the asynchronous API provided by the new incubator
HTTP client. Speciically, I show how to use the new HTTP
client API with JShell, the new read-eval-print loop (REPL)
included with JDK 9.

I start with an introduction to this new client showing
basic synchronous usage. Then, I move to the asynchronous
version and I use the client to perform a basic GET request; I
also work with HTTP/2 over TLS. This way, you can see how to
work with the new HTTP client to take advantage of the lan-
guage features that provide nonblocking behavior.

A Modern HTTP Client
Whenever it was necessary to use an HTTP client in Java, it
was a common practice to use third-party clients. The new
incubator HTTP client is capable of working with HTTP/1.1 and
HTTP/2. It is possible to work with HTTP/2 over TLS (known as
h2) and HTTP/2 over TCP using cleartext (h2c).

The new client is capable of including an upgrade header
ield with the h2c token to request an upgrade from HTTP/1.1
to HTTP/2 over TCP. If the server doesn’t support h2c, there
won’t be an upgrade and everything will go on working with
HTTP/1.1. h2c stands for “HTTP/2 cleartext” and, therefore, it
is important and easy to remember that h2c is not encrypted.

Presently, most conigurations that support HTTP/2
provide support only for h2. Thus, it is very important to
understand how to conigure the client to work with modern
versions of TLS. I include a complete example to cover this
important scenario.

The combination of the new client with the upgrades
in the TLS stack makes it possible to provide support for
Application-Layer Protocol Negotiation (ALPN) and, therefore,
the client can use this TLS extension to negotiate HTTP/2
with fewer round-trips. Based on the coniguration settings
you use for the HTTP client, it can negotiate the previously
explained upgrade from HTTP/1.1 to h2c or select HTTP/2
(h2) from scratch. In addition, the client provides support for
WebSocket conformity with RFC 6455. In this example, I focus
on the HTTP features.

The new incubator module is included in jdk.incubator
.httpclient in JDK 9. It is very important to take into account
that this incubator module will be moved to another mod-
ule in future JDK versions. In previous prerelease versions of
the JDK, the module had a diferent name. You need to make
sure you are running the latest JDK 9 version for the following
code samples to work as expected.

I use JShell to make it easier to demonstrate the usage of
this HTTP client without all the necessary speciic conigu-
rations for build systems or IDEs to work with JDK 9. When I
was writing this article, many IDEs and build systems were
still not 100 percent compatible with JDK 9, so you might see
unexpected issues. However, once the IDEs and build systems

GASTÓN HILLAR

Working with the New HTTP/2 Client
An incubating technology in JDK 9 promises to make HTTP communication a lot simpler.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

40

//java 9 /

provide full compatibility with JDK 9, you can use the code
samples in a Java application built with any IDE.

The following command launches JShell with the jdk
.incubator.httpclient module speciied as a value for the
--add-modules option. This way, JShell will resolve the jdk
.incubator.httpclient and you will be able to use it within the
JShell session. If you have multiple JDK versions installed
and you don’t have JDK 9 in your path, you need to run the
command in the bin folder for JDK 9. In macOS or Linux, you
might need to replace jshell with ./jshell.

jshell --add-modules=jdk.incubator.httpclient

JShell doesn’t require you to use semicolons (;) at the end of
the statements. However, in order to make the code compat-
ible with the Java code for building real-life applications, I
prefer to use semicolons. Enter the following import state-
ment in JShell:

import jdk.incubator.http.*;

JShell includes many import statements by default. However,
if you don’t work with JShell, you need to add the following
additional import statements for the sample code to work:

import java.lang.*;

import java.net.URI;

import java.net.URISyntaxException;

The new module separates requests from responses. The
following are the principal classes with which I work in the
sample code to perform HTTP operations:

■■ HttpClient: Represents an immutable HTTP client with a
speciic coniguration and allows you to send requests and
receive responses

■■ HttpRequest: Represents an HTTP request

■■ HttpResponse: Represents an HTTP response
The API provides builders to create instances and conig-
ure the diferent pieces. These are static methods that start
with the preix new. However, the API doesn’t provide build-
ers for the headers represented with the HTTPHeader class.
Unfortunately, the URI is still speciied as a java.net.URI
instance. Thus, if you need to use query parameters, it is nec-
essary to format or concatenate strings.

The following lines build an HttpClient instance named
client by chaining many method calls after the call to the
HttpClient.newBuilder method that creates a new HttpClient
builder. For example, the call to the followRedirects method
with HttpClient.Redirect.ALWAYS as an argument speciies
that I want the client to always follow redirects. In this case,
I want to follow redirects because I want to perform an HTTP
GET request to the following URI: http://www.oracle.com. I
do not specify any desired HTTP version for the client; there-
fore, the client will be created as an HTTP/1.1 client that won’t
request an upgrade to HTTP/2 in the request header. The
inal chained call to the build method inishes the code for
the builder.

HttpClient client = HttpClient.newBuilder()

 .followRedirects(HttpClient.Redirect.ALWAYS)

 .build();

System.out.println(client.version());

URI uri = new URI("http://www.oracle.com");

HttpRequest request = HttpRequest

 .newBuilder()

 .uri(uri)

 .GET()

 .build();

After the HttpClient instance is built, I print the result
of calling the client.version() method. JShell displays
HTTP_1_1 because I used the default coniguration. Its default

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

41

//java 9 /

value is HttpClient.Version.HTTP_1_1, and it makes the
client work only with HTTP/1.1.

The next line of code creates a new URI instance using
the URI to which I want to make the HTTP GET request, and it
saves it in uri. Then, the code builds an HttpRequest instance
named request by chaining many method calls after the call
to the HttpRequest.newBuilder method that creates a new
HttpRequest builder.

The call to the URI method with uri as an argument
speciies the URI to which I want to make the request. Then,
the chained GET method indicates that I want to make an
HTTP GET request to the speciied URI. The inal chained call
to the build method inishes the code for the builder. The
code is very easy to read. The GET HTTP verb is clearly indi-
cated as a method that I can easily recognize in the code that
builds the HttpRequest instance.

Then, the code shown next calls the client.send method
that runs synchronously and blocks the execution until a
response is retrieved. The code passes the previously created
HttpRequest instance, request, and HttpResponse.Body
Handler.asString() as arguments.

HttpResponse<String> response =

 client.send(request,

 HttpResponse.BodyHandler.asString());

System.out.println(

 String.format("Status code: %d",

 response.statusCode());

System.out.println(

 String.format("Body length: %d",

 response.body().length());

The second argument speciies the response body handler I
want to use. A body handler takes the response status code
and the response headers and returns an HttpResponse

.BodyProcessor instance. In this
case, HttpResponse.BodyHandler
.asString() returns a body pro-
cessor that stores the response
body as a String with the default
charset. After the HTTP GET
request is successfully pro-
cessed, the send method returns
an HttpResponse<String> that is
saved in response.

The inal lines print the
results of the statusCode() and
body().length() methods that
provide the HTTP status code returned by the response and
the length of the body retrieved as a String.

(These lines of code won’t work in JShell if you enter
them as they are displayed. It is necessary to enter each
statement in a single line. Unfortunately, when I was writing
this article, JShell didn’t allow entering code with multiple
lines without throwing some unexpected errors. However,
putting all the code in a single line in this article would make
it very diicult to read.)

The previous code retrieves the body for a web page with
an HTTP GET request to a String and uses HTTP/1.1. This is the
simplest usage you might have for the new HTTP client. If you
read the code again, you will notice that both the HttpClient
and the HttpRequest are built in a similar way. The specii-
cation of the BodyHandler makes it easy to understand that
I want the HttpResponse as a String. You just need to think
about working with builders and coniguring them based on
your goals. The API is clear and chainable.

If you are used to modern Java code, you will ind the API
very easy to use. With just a few lines of code in JShell, I was
able to use the new HTTP client with a very basic conigura-
tion and its synchronous API.

With just a few
lines of code in
JShell, I was able
to use the new HTTP
client with a very basic
configuration and its
synchronous API.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

42

//java 9 /

Working with Asynchronous Execution
Before demonstrating the usage of the client to work with
HTTP/2 and TLS, I’ll work with the asynchronous API. JShell
includes many import statements by default. However, if you
don’t work with JShell, you need to add the following addi-
tional import statement for the next sample code to work:

import java.util.concurrent.CompletableFuture;

In the previous lines that worked with synchronous execu-
tion, I called the client.send method. Now, I will write
similar code to build the HttpRequest, and this time I
will call the client.sendAsync method that returns a
CompletableFuture<HttpResponse<String>>. This way, you
can take advantage of the support of dependent functions and
actions that a java.util.concurrent.CompletableFuture<T>
triggers upon its completion and write code that uses the
HttpResponse<String>. [If you’re not familiar with complet-
able futures, have a look at the explanation of them in Andrés
Almiray’s article on JDeferred in the May/June 2017 issue of
Java Magazine. —Ed.]

In the following code, I call response.whenComplete to
run code that prints the results of the statusCode() and
body().length() methods that provide the HTTP status
code returned by the response and the length of the body
retrieved as a String, if no exception was thrown. Because
the asynchronous task generated under the hood can throw
an exception, I specify HttpResponse<String> response and
Throwable exception when I declare the lambda expres-
sion that will be executed when the asynchronous task is
completed. In the lambda expression body, I work with the
response after making sure that the exception argument
is null.

HttpClient client = HttpClient.newBuilder()

 .followRedirects(HttpClient.Redirect.ALWAYS)

 .build();

URI uri = new URI("http://www.oracle.com");

HttpRequest request = HttpRequest

 .newBuilder()

 .uri(uri)

 .GET()

 .build();

CompletableFuture<HttpResponse<String>> response =

 client.sendAsync(request,

 HttpResponse.BodyHandler.asString());

response.whenComplete((HttpResponse<String> response,

 Throwable exception) -> {

 if (exception == null) {

 System.out.println(

 String.format("Status code: %d",

 response.statusCode()));

 System.out.println(String.format(

 "Body length: %d",

 response.body().length()));

 } else {

 System.out.println(String.format(

 "Something went wrong. %s",

 exception.getMessage()));

 }

});

With just these few lines of code in JShell, I was able to use
the new HTTP client with a very basic coniguration and its
asynchronous API.

Working with HTTP/2 over TLS
The HTTP client uses standard Java TLS mechanisms to
enable work with HTTP/2 over TLS (h2). To do this program-
matically, it is necessary to create and initialize a javax.net
.ssl.SSLContext instance and pass it as an argument to the
sslContext method chained to the HttpClient builder. The

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.javamagazine.mozaicreader.com/MayJune2017#&pageSet=16&page=0

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

43

//java 9 /

name chosen for the sslContext
method is confusing, because
it makes you think that the
HttpClient will use the old and
deprecated SSL instead of TLS to
work with h2. It is important to
avoid confusion about the usage of
“SSL” and the various names. The
sslContext method will conigure
a TLS context, not an SSL context. I
work with TLS version 1.2 (TLSv1.2)
in my next example.

I also use the Bouncy Castle
libraries to make it easy to load
certiicates. I end up generating
an SSLContext instance conigured
for TLSv1.2. These Bouncy Castle
libraries are very popular when developers are working with
TLS in Java. Using them, I combine the new HTTP client
with the usage of Bouncy Castle libraries to work with h2 in
JShell. When I was in the process of writing this article, the
latest version of the Bouncy Castle libraries was 1.57 and,
therefore, I use the names for the JAR iles that include this
version number.

I won’t be working with any speciic build system. I will
continue to make the examples work with JShell. However,
you can easily use the code as a baseline to conigure any
build system to work with the Bouncy Castle libraries.

Download the following JAR iles from the Bouncy Castle
site and save them in a folder:

■■ bcmail-jdk15on-157.jar
■■ bcpkix-jdk15on-157.jar
■■ bcprov-jdk15on-157.jar

The following line launches JShell with the jdk.incubator
.httpclient module speciied as a value in the --add-
modules option and the previously enumerated JAR iles spec-

iied as values for the --class-path option. This way, JShell
will resolve the jdk.incubator.httpclient and load the spec-
iied class iles that allow us to work with the Bouncy Castle
libraries. Make sure you launch JShell in the path in which
you saved the JAR iles. If you don’t have jshell included in
the path, you need to specify its full path:

jshell --add-modules=jdk.incubator.httpclient --class-

path=bcpkix-jdk15on-157.jar;bcmail-jdk15on-157

.jar;bcprov-jdk15on-157.jar

The following code contains all the import statements. I’m
also including many import statements that JShell runs by
default, to make it easy to run the code when you don’t use
JShell. Import statements that duplicate ones JShell brings in
automatically do not generate errors.

import jdk.incubator.http.*;

import java.util.concurrent.CompletableFuture;

import java.lang.*;

import java.net.URI;

import java.net.URISyntaxException;

import jdk.incubator.http.*;

import java.security.KeyFactory;

import java.security.KeyStore;

import java.security.KeyStoreException;

import java.security.NoSuchAlgorithmException;

import java.security.PrivateKey;

import java.security.SecureRandom;

import java.security.Security;

import java.security.UnrecoverableKeyException;

import java.security.cert.Certificate;

import java.security.cert.CertificateException;

import java.security.cert.CertificateFactory;

import java.security.cert.X509Certificate;

import java.security.spec.InvalidKeySpecException;

For software
development
tasks, you will find
the new HTTP/2
client to be extremely
useful, especially
when you need
to work with an
interactive REPL
such as JShell.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.bouncycastle.org/java.html
https://www.bouncycastle.org/java.html

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

44

//java 9 /

import java.security.spec.PKCS8EncodedKeySpec;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.InputStream;

import javax.net.ssl.KeyManager;

import javax.net.ssl.KeyManagerFactory;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSocketFactory;

import javax.net.ssl.TrustManager;

import javax.net.ssl.TrustManagerFactory;

import

 org.bouncycastle.jce.provider.BouncyCastleProvider;

import org.bouncycastle.util.io.pem.PemObject;

import org.bouncycastle.util.io.pem.PemReader;

The TLSContextHelper class declares many static methods
that will allow me to work with TLSv1.2. It is about 150 lines,
so you need to download it from Java Magazine’s download
area. The methods of importance in this code are

■■ getKeyFactoryInstance: Returns a java.key.KeyFactory
instance that converts public and private keys of the
RSA algorithm.

■■ createX509CertificateFromFile: Takes a certiicate ile-
name, loads the ile contents, generates an instance of
X509Certiicate from the ile, and returns the instance.

■■ createPrivateKeyFromPemFile: Takes a key ilename in the
PEM format, loads the ile contents, generates an instance
of java.Security.PrivateKey, and returns the instance.

■■ createKeyManagerFactory: Takes a certiicate ilename,
a client key ilename, and a client key password; and
calls the createX509CertificateFromFile and create
PrivateKeyFromPemFile methods. Subsequently, the code
uses the instances returned by these methods to create

an instance of the java.net.ssl.KeyManagerFactory class,
which it then returns.

■■ createTrustManagerFactory: Takes a certiicate authority
certiicate ilename and calls the createX509Certificate
FromFile method. The code uses the X509Certiicate
instance, and creates and returns an instance of the java
.net.ssl.TrustManagerFactory class.

■■ createAndInitTLS12Context: Takes a certiicate author-
ity certiicate ilename, a client certiicate ilename,
and a client key ilename, and creates and initializes an
SSLContext instance with the desired TLS version (TLSv1.2).
The code uses the BouncyCastleProvider and calls the
previously explained createKeyManagerFactory and
createTrustManagerFactory methods.

The certificatesPath variable in the following code declares
a base path for the certiicates that you need to run this
example. You should replace the contents of this string with
the path in which you have a certiicate authority certiicate
ile, a client certiicate ile, and a client key ile. You must use
iles that will be compatible with the HTTP request you are
going to process. I use a Windows path, D:\JavaMagazine
\http2, as an example. However, the code that deines the
variables that specify the ilenames for the certiicate
authority certiicate, the client certiicate, and the client key
are compatible with any platform in which you are running
the code, such as Linux, Oracle Solaris, or macOS. The code
calls String.join and uses java.io.File.separator to build
the ilenames by combining the previously explained path
with ilenames. Make sure you replace ca.crt, server.crt,
and server.key with the appropriate ilenames. The last line
creates and initializes the SSLContext that I will use with the
HttpClient to work with h2.

String certificatesPath = "D:\\JavaMagazine\\http2";

String caCertificateFileName =

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://bit.ly/2sMGME0
http://bit.ly/2sMGME0

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

45

//java 9 /

 String.join(java.io.File.separator,

 certificatesPath,

 "ca.crt");

String clientCertificateFileName =

 String.join(java.io.File.separator,

 certificatesPath,

 "server.crt");

String clientKeyFileName =

 String.join(java.io.File.separator,

 certificatesPath,

 "server.key");

SSLContext sslContext =

 SecurityHelper.createAndInitSSLContext(

 caCertificateFileName,

 clientCertificateFileName,

 clientKeyFileName);

The following lines build an HttpClient instance named
client by chaining many method calls after the call to the
HttpClient.newBuilder method that creates a new Http
Client builder. Some parts of the code are similar to the
previous examples. However, in this case, notice that the
call to the sslContext method (with the previously created
SSLContext instance named sslContext as an argument)
makes it possible to work with HTTP/2 over TLSv1.2. Then, the
call to the version method with HttpClient.Version.HTTP_2
as an argument forces the use of HTTP/2, speciically, HTTP/2
over TLSv1.2 because I chained the call to SSLContext, too.

HttpClient client = HttpClient.newBuilder()

 .sslContext(sslContext)

 .version(HttpClient.Version.HTTP_2)

 .followRedirects(HttpClient.Redirect.ALWAYS)

 .build();

System.out.println(client.version());

URI uri =

 new URI("https://your-rest-api-url-for-get-method");

HttpRequest request = HttpRequest

 .newBuilder()

 .uri(uri)

 .GET()

 .build();

CompletableFuture<HttpResponse<String>> response =

 client.sendAsync(request,

 HttpResponse.BodyHandler.asString());

response.whenComplete((HttpResponse<String> response,

 Throwable exception) -> {

 if (exception == null) {

 System.out.println(

 String.format("Status code: %d",

 response.statusCode()));

 System.out.println(String.format(

 "Body length: %d",

 response.body().length()));

 } else {

 System.out.println(String.format(

 "Something went wrong. %s",

 exception.getMessage()));

 }

});

After the HttpClient instance is built, the next line prints the
result of calling the client.version() method. JShell displays
HTTP_2 because I forced the usage of HTTP/2. In this case, you
have to replace https://your-rest-api-url-for-get-method
with the URI for your REST API that allows a GET method and
provides a response with HTTP/2 over TLSv1.2. Remember
that you are using certiicates, so any wrong certiicate will
make the TLS handshake (reported as an SSL handshake in
the old Java names for exceptions) fail. With just a few addi-

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

46

//java 9 /

tional lines, the code performs an HTTP GET request with an
asynchronous execution, as done in the previous examples.
However, in this case, if the REST API is compatible with
HTTP/2 over TLSv1.2, the HttpClient will work with this pro-
tocol instead of HTTP/1.1.

HttpClient client = HttpClient.newBuilder()

 .sslContext(sslContext)

 .version(HttpClient.Version.HTTP_2)

 .followRedirects(HttpClient.Redirect.ALWAYS)

 .build();

System.out.println(client.version());

URI uri = new URI("https://your-rest-api-url-for-get-

method");

HttpRequest request = HttpRequest

 .newBuilder()

 .uri(uri)

 .GET()

 .build();

CompletableFuture<HttpResponse<String>> response =

 client.sendAsync(request,

 HttpResponse.BodyHandler.asString());

response.whenComplete((HttpResponse<String> response,

 Throwable exception) -> {

 if (exception == null) {

 System.out.println(

 String.format("Status code: %d",

 response.statusCode()));

 System.out.println(String.format(

 "Body length: %d",

 response.body().length()));

 } else {

 System.out.println(String.format(

 "Something went wrong. %s",

 exception.getMessage()));

 }

});

Conclusion
These simple examples demonstrated how to use the new
incubator module HTTP/2 client with HTTP/2 over TLS in
JShell. The module provides many additional features that you
can also use from JShell and that make code easy to read. For
software development tasks, you will ind the new HTTP/2
client to be extremely useful, especially when you need to
work with an interactive REPL such as JShell. However, the
current disadvantage is that the module is included as an
incubator and is subject to change. Nonetheless, if you can
tolerate some API changes, the beneits of the new features
justify exploring the technology. </article>

Gastón Hillar (@gastonhillar) has been working as a software

architect with Java since its irst release. He has twenty years of

experience designing and developing software and is the author of

many books related to software development, hardware, electron-

ics, and the Internet of Things. Hillar has been awarded the Intel

Black Belt Software Developer award eight times.

Home page for HTTP/2

JEP 110: HTTP/2 Client (Incubator)

JEP 222: jshell: The Java Shell

RFC 6455 (WebSocket Protocol)

Bouncy Castle Crypto APIs

learn more

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://http2.github.io/
http://openjdk.java.net/jeps/110
http://openjdk.java.net/jeps/222
https://tools.ietf.org/html/rfc6455
https://www.bouncycastle.org/

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

47

//ix this /

These questions simulate the level of diiculty of two dif-
ferent certiication tests. Those marked “intermediate”

correspond to questions from the Oracle Certiied Associate
exam, which contains material for a preliminary level of
certiication. Questions marked “advanced” come from the
1Z0-809 Programmer II exam, which is the certiication test
for developers who have been certiied at a basic level of Java 8
programming knowledge and now are looking to demonstrate
more-advanced expertise.

Let me re-emphasize that these questions rely on Java 8.
I’ll begin covering Java 9 in a future column and will make
that transition quite clear when it occurs.

Question 1 (intermediate). Given this code:
interface ParentIF {}

interface ChildIF extends ParentIF {}

interface OtherIF {}

class ParentCL {}

class ChildCL extends ParentCL {}

class OtherCL {}

and this code:
ChildIF cI = null;

ParentIF pI = null;

OtherIF oI = null;

ChildCL cC = null;

ParentCL pC = null;

OtherCL oC = null;

cI = (ChildIF)oI; // line n1

cC = (ChildCL)pC; // line n2

cC = (ChildCL)oC; // line n3

cI = (ChildIF)oC; // line n4

Which is true? Choose one.
a. Line n1 and line n3 both fail to compile.
b. The casts are unnecessary in both line n1 and line n3.
c. Line n3 fails to compile.
d. The casts are unnecessary in both line n2 and line n4.
e. Line n4 fails to compile.

Question 2 (intermediate). Given the following:
class P {

 private int value;

 // line n1

 public P(int v) {

 value = v;

 }

}

class S extends P {

 private int value;

 // line n2

 public S(int v, int u) {

 // line n3

 value = u;

 }

}

SIMON ROBERTS

Quiz Yourself
Intermediate and advanced test questions

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

48

//ix this /

Which of these statements is true? Choose one.
a. The code compiles without errors.
b. Adding the following at line n2 allows the code to

compile without errors: public S(int v) {}.
c. Adding the following at line n3 allows the code to

compile without errors: this(v);.
d. Adding the following at line n3 allows the code to

compile without errors: super(v);.
e. Adding the following at line n1 allows the code to

compile without errors: private P(){}.

Question 3 (advanced). You are writing a program that needs
to respond to changes in a directory, such as a new version of
a ile being written or a ile being added or deleted.

Which of these features from the standard Java SE APIs would

you use in addressing this requirement? Choose one.
a. java.nio.file.Path

b. java.nio.file.Files

c. java.nio.file.FileVisitor

d. java.nio.channels.AsynchronousChannel

e. java.io.File

Question 4 (advanced). Given the following code:
public static void delay() {

 try { Thread.sleep((int) (Math.random() * 10)); }

 catch (InterruptedException ie) {}

}

public static void main(String[] args) {

 int[] x = {0};

 boolean[] hold = {true};

 new Thread(() -> {

 delay();

 x[0] = 99;

 hold[0] = false;

 }).start();

 new Thread(() -> {

 delay();

 while (hold[0])

 ;

 System.out.println("value is " + x[0]);

 }).start();

}

And, choosing from these behaviors:
1. The program prints value is 0.
2. The program prints value is 99.
3. The JVM exits (the program stops).
4. The JVM does not exit (the program does not stop).

Which describes all the outcomes allowed by the specification?

Choose one.
a. 2 and 3
b. Neither 1 nor 2, and 3
c. Either 1 or 2, and 3
d. Either 2 and 3; or neither 1 nor 2, and 4
e. 3 and either 1 or 2; or neither 1 nor 2, and 4

Question 1. The correct answer is option C. This question
examines some aspects of assignment compatibility.

As a summary, the compiler recognizes three situations
during an assignment. First, the expression on the right has
an is-a relationship with the type of the expression being
assigned to. The expression could be an exact instance or
an instance of a class that is a subclass of the class that’s

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

49

//ix this /

the target of the assignment,
or it could be an implemen-
tation of the interface that’s
the target of the assignment.
In this situation, the assign-
ment works directly and no cast
is necessary.

The second situation is
where the expression on the
right might refer to something
that is assignment-compatible,
but it’s not deinite. This hap-
pens, for example, when the
expression on the left is a
subclass of the expression on
the right. It also happens in
many situations where inter-
faces are involved. In the lat-
ter case, the compiler allows the assignment only if a cast is
used, and it lets the runtime system verify the validity of the
actual usage.

The third situation is where the compiler can prove that
the assignment cannot possibly work, such as with classes
that don’t share any class hierarchy. In this situation, the
compiler rejects the assignment even if a cast is used.

None of the options in this question assigns from some-
thing that has an is-a relationship to a more general type in
the way that does not require a cast. Therefore, if any of the
casts is removed, what’s left is not a compilable assignment.
Because of this, options B and D are both incorrect.

Given that every case has an explicit cast, all that
remains is to determine whether the assignment is plausible
and, therefore, whether it will be permitted by the compiler.
Let’s look at these one at a time.

Line n1 takes a reference to an OtherIF and attempts to
cast it to a ChildIF. There’s no relationship between these

interface types, but what matters to the compiler is whether
it’s possible that the reference being cast might actually
implement the ChildIF interface. In general, such a cast to an
interface type is plausible. For example, imagine this addi-
tional class deinition exists:

class BothImpl implements ChildIF, OtherIF {}

Now suppose the variable oI refers to an instance of BothImpl.
That’s possible, because BothImpl has an is-a relationship to
OtherIF. In that case, the cast would succeed when executed.
Because a scenario is possible in which the cast would suc-
ceed, the compiler allows the code, deferring to the runtime
system to determine if it actually works. This tells you that
option A is false, because line n1 compiles (even though I’ve
not discussed line n3 yet).

The code in line n2 takes a reference of ParentCL type
and casts it to ChildCL. This is always plausible, simply
because the ChildCL type is assignment-compatible with the
ParentCL type. Because you can assign pC = cC without any
cast, this means that the opposite, cC = (ChildCL) pC, while
needing the cast, is deinitely plausible, because you’d simply
be putting the original value back into cC. Therefore, line n2
is deinitely compilable, even though it doesn’t move the
search for the right answers forward—option D was already
rejected, because the cast is necessary.

Line n3 attempts to cast a reference to an instance of
OtherCL to a ChildCL. This is not plausible. A simple instance
of OtherCL is an OtherCL and is an Object but, because Java
doesn’t permit multiple class inheritance, it’s not possible to
have any object that has both OtherCL and ChildCL as par-
ents. Because of this, line n3 does not compile and option C
is correct.

Line n4 takes a reference to OtherCL and casts it to
ChildIF. Similar to the consideration in line n1, this is plau-
sible. Just imagine that you have another declaration:

If a constructor does
not explicitly state
how to pass control
to a superclass
constructor, the
compiler implicitly
generates code in the
constructor that invokes
the zero-argument
constructor of the
parent class.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

50

//ix this /

class AnotherImpl extends OtherCL implements ChildIF {}

Clearly it’s possible then to have the oC reference point at
one of these objects, and that would successfully cast to the
ChildIF type as required. As a result, option E is incorrect.

As a side note, if the deinition of OtherCL were final,
guaranteeing there could be no subclasses of OtherCL, then
line n4 would fail to compile, because no scenario like the one
outlined above would be possible.

Question 2. The correct answer is option D. This question
investigates the initialization of parent class elements that
occurs as part of the initialization of subclasses. Java takes con-
siderable pains to ensure that things are properly initialized.
(It’s not always possible to enforce that, but it’s a clear goal.)

Three particular behaviors are relevant to this ques-
tion. First, any time a subclass is instantiated, it must call up
to a speciic parent class constructor, passing the required
arguments, so that the parent has a chance to be properly
initialized.

Second, in the unique situation that the source code for
a class does not deine any explicit constructor, the compiler
creates one by default. That constructor takes zero arguments,
and it calls the zero-argument constructor of its parent class,
the superclass, even if that class is Object.

Third, if a constructor does not explicitly state how to
pass control to a superclass constructor, the compiler implic-
itly generates code in that constructor that invokes the zero-
argument constructor of the parent class. This rule means
that the constructor shown for S is equivalent to this:

public S(int v, int u) {

 super();

 value = u;

}

In this example, the child class S—as written—has no explicit
call to any constructor in the parent class P, so it will invoke
the zero-argument constructor of the parent. However, P has
an explicit constructor that takes a single argument. Because
of this, the child constructor cannot compile, because it
implicitly calls a (nonexistent) zero-argument constructor in
P. Therefore, option A is false.

There are two likely solutions to the problem. Either
you provide the parent class P with a suitable zero-argument
constructor to accept the child’s call, or you modify the child
constructor to explicitly call the constructor that does exist
in the parent class. It could call the existing constructor, or
you could make another constructor in P with diferent argu-
ments, and call that explicitly from S. None of the options
proposes that latter route, so you can ignore it.

Option B adds a single-argument constructor to the
child, but that doesn’t actually help. The provided construc-
tor still has no explicit constructor call; therefore, a zero-
argument constructor is still required in the parent. Adding
such a constructor to the child does not help this situation.
Note that mere matching of constructor signatures—that is,
matching the argument lists—has no value here. Therefore,
option B is false.

Option C is actually valid syntax, but it is incorrect for
solving the problem at hand. The use of this(v); would try
to delegate to a constructor that takes one argument, but that
target constructor would have to be in the same class, not the
parent. Because of this, option C is false. Also, note that con-
structors, unlike instance methods, are not inherited, so there
really is no target for the call proposed here.

Option D is the correct syntax for invoking the single-
argument parent class constructor. It satisies the need for
the single argument by passing the value of v up to the parent
class constructor. From there, that value will be stored in the
private member variable value that is a member of P. Because

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

51

//ix this /

of this, option D results in suc-
cessful compilation, and it is the
correct answer.

Option E might look tempt-
ing, creating a zero-argument
constructor in the parent, but
the constructor in this option is
private. A private zero-argument
constructor would not be acces-
sible to the child class and, for
this reason, it does not solve the essential problem: the
construc tor in S tries to call a zero-argument constructor in P.
S must have access to the target constructor, and the private
form fails in that respect. Because of this, option E is incor-
rect. A private constructor might seem strange, but it can be
very useful for taking control of how objects are created, for
example, in implementing the singleton, static factories, and
builder patterns.

It’s also interesting to consider the private ields called
value that exist in both P and S. Is this a really bad idea? Are
they actually the same ield? In fact, neither is true. Because
the ields are private, there’s no naming collision; each is vis-
ible only within the class that contains it. In efect, they’re
not visible outside their classes, so nobody can be afected by
them, nor can the names collide with any other variable of
that name. Also, they really do deine separate ields; they’re
not somehow the same ield. Therefore, while it might look
odd when you are looking at both classes at once, this code
is actually ine and you wouldn’t even notice it if you didn’t
see both pieces of source code at once. However, if these
ields were accessible outside the class—for example, if they
allowed default access—the code would be pretty horrible.
Such a situation is typically called shadowing, or sometimes
variable hiding, and although it’s manageable with careful
syntax use, allowing it is just asking for maintenance trouble
and can cause all kinds of misunderstandings.

Question 3. The correct answer is option A. This is almost one
of those troublesome “learn the API” questions, except that,
in this question, you don’t have to learn method names; you
just have to learn about the facilities the API can ofer. That’s
actually not a waste of time, because failing to learn such
things often results in duplicating behavior that has already
been provided for you. On that basis, I make no apology for
this question.

So, what do these various features do? First, the
java.nio.file.Path interface is the modern way for a Java
program to represent “path and ilename” as they relate to
disk storage. This formerly was done using the java.io.File
class, but that class lacked expressive power for representing
less-universal features of ile systems, such as permissions.
Notably, Path is an interface, allowing entirely independent
implementations on diferent operating systems or even ile
system types, whereas File is a class, which made such lex-
ibility harder to achieve. Along with many handy and predi-
cable features for interacting with the path segments, and for
dealing with relative and absolute paths, the Path interface
deines two methods called register, which allow code to
determine easily when changes are made to a ile system.
Given this description, it’s clear that option A is the cor-
rect answer. It’s also safe to infer that option E is incorrect,
because the File class is of limited functionality and it is
considered to be a legacy feature.

The Files class is a container for static methods that per-
form useful operations such as copying and moving iles, cre-
ating and deleting iles and directories, reading and manipu-
lating permissions, and traversing directory trees. The class
also provides utility methods that can simplify access to the
data in iles, for example, the lines method that reads a text
ile as a Stream<String> directly. Although this is a very use-
ful class—well worth looking at, if you haven’t already—it’s
not directly suitable for solving the problem of watching for
change in a directory structure, and so option B is incorrect.

Programmers need
a mental model of
how a computer works
that allows reasoning
about their daily work.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

52

//ix this /

The FileVisitor interface is used with features such as
the Files.walkFileTree method. The visitor is used to per-
form operations on some or all of the iles and directories in a
directory tree. The interface can, therefore, examine the con-
tents of directories, but it does so on a one-time basis, and it
is not directly suited to looking for changes. Therefore, option
C is incorrect.

The AsynchronousChannel interface is the base interface
from which some interesting classes are derived indirectly.
These interesting classes allow “callback” type asynchro-
nous I/O operations, which are potentially valuable in highly
concurrent systems that seek to minimize the number of
threads they use. However, this capability has no direct rela-
tionship with the issue of monitoring changes in a directory.
Therefore, option D is incorrect.

Finally, it’s fair to point out that although the Path inter-
face deines the register method that facilitates monitor-
ing changes on the ile system, it’s not suicient on its own.
You’ll also need to pass an instance of WatchService to that
method. You can get an instance of WatchService from a static
factory method: FileSystem.newWatchService().

Question 4. The correct answer is option E. This question
delves into one of the most commonly misunderstood areas
of Java’s speciication—the memory model—and what it
means for the behavior of threaded code. Two particular
points afect the behavior of the given program, and they
are permitted by the speciication: the visibility of writ-
ten data and the perceived ordering of the write operations.
Notice that one of these points is unlikely to be manifested if
you run the code, but that doesn’t mean the answer I give is
incorrect; it just means your system doesn’t happen to behave
in this way.

Programmers need a mental model of how a computer
works that allows reasoning about their daily work. Generally,
the kind of model that serves well on a daily basis is a fairly

signiicant simpliication and can get you into trouble where
concurrency is concerned. Hardware engineers have some
radical tricks up their sleeve to make their processors per-
form faster, and Java needs to allow every host it runs on to
use as many of these tricks as possible to ensure good per-
formance. Consequently, Java’s speciication is not written
in terms of implementations but in terms of what memory
efects can be relied upon. The speciication uses an idea
called a happens-before relationship to allow reasoning about
which data written by one thread must be visible to another
thread and when that data must be visible.

Perhaps strangely, a happens-before relationship does
not actually say that one thing happens before another, at
least not in the sense you would expect. It does not really
relate to, nor does it actually mandate, execution order; it
relates only to particular visibilities of an efect. That’s per-
haps surprising, but one rationale for this is that optimiz-
ing compilers have for decades indulged in the reordering of
instructions. Reordering can be safe in particular situations.
Let’s look at a simple example:

double x = heavyComputation();

double y = otherComputation();

if (x > 3) doSomethingWith(x);

Notice that changing the order of the irst two lines would
make no diference to the result, but it’s possible that a com-
piler might generate more-eicient code as a result of this
reordering. It would be able to execute otherComputation
and store the result, and then perform heavyComputation
and immediately use the value of x, rather than storing x
and having to fetch it back again for the third operation.
That might seem like a small improvement, but many small
improvements can add up to a large improvement.

What does a happens-before relationship tell us? If A
happens before B, and B reads something written by A, the

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

53

//ix this /

happens-before relationship tells you that B will read the
value written by A. Importantly, unless both the happens-
before relationship and the “observation” exist, no guar-
antees are given. Further, just because the happens-before
relationship exists in one context (for example, between
two threads T1 and T2), that guarantees nothing about the
visibilities of efects elsewhere where no such relationship
exists (for example, a third thread T3). As you would expect,
the happens-before relationship is created by the order of the
code lines executed by a single thread, and happens-before
relationships are transitive. Therefore, if A happens before
B and B happens before C, then A happens before C. But
that simple line-by-line expectation holds only for a single
thread, although the transitive efect is not limited to single
threads. Special steps must be taken to create any necessary
relationship across threads.

In the code example in the question, nothing is done to
create any happens-before relationships between the two
threads that are created and started inside the main method.
This means that the second thread—the one doing the
reading—might or might not see the change from 0 to 99 in
the array x. Similarly, it might or might not see the change
from true to false in the array hold. It might see both
changes or it might see neither, but it also might see either
one without seeing the other one. (That often comes as a sur-
prise to the developer.) Therefore, the second thread might
see the 99, yet not see the change to false, or it might see
the change to true, but not see the change to 99. That second
possibility, which results in the program printing value is 0
and then exiting, is often a bit unexpected. (To be fair, it’s
also a fairly unlikely result in typical computation hardware,
but the speciication allows it, which means that this is a bug
in the code and that’s not OK.)

Therefore, let’s consider the possible outcomes. What
matters is what the second thread sees. If it sees the bool-
ean value change, it prints something and the program exits.

But, if it doesn’t see the boolean change, it never prints and
it doesn’t stop. That allows you to eliminate options A, B, and
C, all of which fail to acknowledge that the program might
never stop.

To evaluate the last two possibilities, you must con-
sider the value that will be printed if the second thread sees
the change in the boolean. You now know that it could cor-
rectly print either value is 0 or value is 99. Therefore,
option D, which suggests that if it stops, it must have printed
value is 99, but admits that it might not stop at all, is incor-
rect. Option E, which admits that it could either print a value
and stop or print nothing and not stop, is the correct answer.

It’s likely the notion that “the speciication allows this”
is a bit unsatisfying, so let’s look at one way this might
actually happen in real hardware. But irst, it’s important
to realize that trying to reason about Java memory behav-
ior in terms of hardware implementation is dangerous and
often misleading. The only reliable approach is to consider
the memory model and reason using that. Anyway, just to
quiet that nagging “but that could never happen” feeling,
here’s one possible way it might happen on real hardware.
First, suppose that both the threads created in the main
method start running on their own CPUs, and those CPUs
have independent caches (which is not unreasonable). Now,
imagine that the writing thread runs, and it writes both 99
and false to its cache, not to main memory. Now, given that
no happens-before relationship has been enforced between
the threads, neither the underlying hardware nor the JVM
has any obligation to maintain any kind of cache coherence
between those threads—and whether those values end up
in main memory or get moved to the other CPU’s cache is
undeined. Therefore, imagine that the boolean value hap-
pens to be lushed out of the cache, before the 99. (Caches
usually lush a row at a time, and these two data items might
happen to be in diferent rows. Then it would not be unrea-
sonable that they could be lushed in the opposite order from

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

54

//ix this /

the order in which they were written.) In this situation, write
operations that were executed “in order” by one thread can
be seen as occurring out of order by another thread. That is
suicient to explain why the memory model is the only safe
way to reason about what does, and does not, constitute reli-
able code in Java.

It’s probably fair to discuss briely how this code could
be made to behave in the expected way. I venture to suggest
that the expected behavior—that is, the behavior implied by
the source code—is that it should print value is 99 and then
stop. To achieve this, you must create a happens-before rela-
tionship between the write to hold[0] by the irst thread and
the read from it by the second thread.

One simple way to create a happens-before relationship
between two threads depends on the fact that a write to a
volatile variable happens before a subsequent read from that
same variable. It’s probably tempting, then, to modify the
hold variable to be volatile. But that would not work, because
the modiier would relate to the variable, and that variable is
a reference to the array, not the storage in the array. In other
words, you never write to the volatile variable itself. You
also cannot convert the array to a simple variable, because
the access to the value from the nested Runnable instances
mandates that the variable be efectively inal. You could,
however, make hold into a simple static ield in the enclos-
ing class and then label that static ield as volatile. That’s not
the only way, of course, but it would be suicient to solve this
particular problem. </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s

irst Java classes in the UK. He created the Sun Certiied Java

Programmer and Sun Certiied Java Developer exams. He wrote

several Java certiication guides and is currently a freelance edu-

cator who teaches at many large companies in Silicon Valley and

around the world. He remains involved with Oracle’s Java certiica-

tion projects.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.

Built for modern app dev.

Built for you.

Your Java applications need high-performance

and battle-tested platform and infrastructure

services to build, test, deploy, and monitor.

Oracle Cloud delivers.

Start with Java in the cloud—or choose whatever

language, database, compute service, and OS

option you need. Rapid scalability. True portability.

It’s all here. Now.

Java Is Just
the Beginning

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE /// JULY/AUGUST 2017

55

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your sub-

scription, please contact the folks at

java@omeda.com, who will do what-

ever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A-3133,

Redwood Shores, CA 94065, USA.

 Subscription application

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

