
REACTIVE
PROGRAMMING
Handling large data streams eiciently

ORACLE.COM/JAVAMAGAZINE

magazine

By and for the Java community

RXJAVA—
REACTIVE
LIBRARY FOR
THE JVM

32
REACTIVE
PROGRAMMING
WITH JAX-RS

16
REACTORS IN
SPRING 5.0

61
CQRS: NOT
THE USUAL
CRUD

69

INTERFACES IN DEPTH 90 | BOOKS ON JAVA 9 07

JANUARY/FEBRUARY 2018

http://www.oracle.com/javamagazine

https://www.jetbrains.com/idea?utm_source=javamag&utm_medium=cpc&utm_campaign=idea2018

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

02

//table of contents /

90
The Evolving Nature
of Java Interfaces
By Michael Kölling

Understanding multiple inheritance

in Java

101
Fix This
By Simon Roberts and Mikalai Zaikin

Our latest quiz with questions that

test intermediate and advanced

knowledge of the language

32
GOING REACTIVE
WITH ECLIPSE VERT.X
AND RXJAVA

By Clement Escoier

and Julien Ponge

Building fast scalable systems

with one of the most popular

reactive Java libraries

61
REACTIVE SPRING

By Josh Long

Proceeding from fundamentals,

use the Spring Framework

to quickly build a reactive

application.

69
COMMAND QUERY
RESPONSIBILITY
SEGREGATION
WITH JAVA

By Sebastian Daschner

Get around the limitations of

CRUD by using event streams

and an eventually consistent

architecture.

//table of contents /

REACTIVE PROGRAMMING WITH JAX-RS
By Mert Çalışkan

Using an asynchronous approach and staging to develop

responsive reactive apps

COVER FEATURES

OTHER FEATURES DEPARTMENTS

05
From the Editor
The decline of dynamic typing

07
Java Books
Reviews of Java 9 Modularity and

Java 9 for Programmers

10
Events
Upcoming Java conferences and events

13
User Groups
The Denver JUG

114
Contact Us
Have a comment? Suggestion? Want to

submit an article proposal? Here’s how.

COVER ART BY PEDRO MURTEIRA

16

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

03

EDITORIAL

Editor in Chief
Andrew Binstock

Managing Editor
Claire Breen

Copy Editors
Karen Perkins, Leslie Steere

Technical Reviewer
Stephen Chin

DESIGN

Senior Creative Director
Francisco G Delgadillo

Design Director
Richard Merchán

Senior Designer
Arianna Pucherelli

Designer
Jaime Ferrand

Senior Publication Designer
Sheila Brennan

Production Designer
Kathy Cygnarowicz

PUBLISHING

Publisher and Audience Development
Director
Karin Kinnear

Audience Development Manager
Jennifer Kurtz

ADVERTISING SALES

Sales Director
Tom Cometa

Account Manager
Mark Makinney

Mailing-List Rentals
Contact your sales representative.

RESOURCES

Oracle Products
+1.800.367.8674 (US/Canada)

Oracle Services
+1.888.283.0591 (US)

ARTICLE SUBMISSION

If you are interested in submitting an article, please email the editors.

SUBSCRIPTION INFORMATION

Subscriptions are complimentary for qualified individuals who complete the
subscription form.

MAGAZINE CUSTOMER SERVICE

java@omeda.com

PRIVACY

Oracle Publishing allows sharing of its mailing list with selected third parties. If you prefer
that your mailing address or email address not be included in this program, contact
Customer Service.

Copyright © 2018, Oracle and/or its affiliates. All Rights Reserved. No part of this publication may be reprinted or otherwise

reproduced without permission from the editors. JAVA MAGAZINE IS PROVIDED ON AN “AS IS” BASIS. ORACLE EXPRESSLY

DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED. IN NO EVENT SHALL ORACLE BE LIABLE FOR ANY

DAMAGES OF ANY KIND ARISING FROM YOUR USE OF OR RELIANCE ON ANY INFORMATION PROVIDED HEREIN. Opinions

expressed by authors, editors, and interviewees—even if they are Oracle employees—do not necessarily reflect the views of Oracle.

The information is intended to outline our general product direction. It is intended for information purposes only, and may not

be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. Oracle and Java are registered trademarks of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Java Magazine is published bimonthly and made available at no cost to qualified subscribers by

Oracle, 500 Oracle Parkway, MS OPL-3A, Redwood City, CA 94065-1600.

ASSOCIATE PROFESSIONAL MASTER EXPERT SPECIALIST

Display Your Oracle Certification Digital Badge

Claim your certification badge and validate
your skills across all online platforms.

You’ve Earned It

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:karin.kinnear%40oracle.com?subject=
mailto:jennifer.s.kurtz%40oracle.com?subject=
mailto:tom.cometa%40oracle.com?subject=
mailto:mark.m.makinney%40oracle.com?subject=
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
mailto:java%40omeda.com?subject=
mailto:java%40omeda.com?subject=
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=861

Register Now
Oracle Code is BACK! | 1-Day, Free Event

developer.oracle.com/code
Coming to a city near you:

• DevOps, Containers, Microservices, and APIs

• MySQL, NoSQL, Oracle, and Open Source Databases

• Development Tools and Low Code Platforms

• Open Source Technologies

• Machine Learning, AI, and Chatbots

Explore the Latest Developer Trends:

https://developer.oracle.com/code

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

05

//from the editor /

PHOTOGRAPH BY BOB ADLER/THE VERBATIM AGENCY

If you follow the rise and fall of programming

languages—either from the comfort of an

armchair, ensconced with your preferred tools

but interested in other people’s choices, or from

a keyboard, happy to hyperkinetically try out all

kinds of new idioms—you will have noticed an

unmistakable trend in modern language design:

a preference for static typing.

Look at the major languages that have

emerged in the past decade—Go, Swift, Kotlin,

and Rust—they’re all statically typed. Moreover,

languages that were once dynamic have added

static typing. The most conspicuous example is

the recent set of updates to JavaScript (or more

accurately, ECMAScript). Apple’s choice to replace

dynamically typed Objective-C with Swift also

follows this trend.

As a quick refresher, static typing refers to a

type system that makes it possible to know the

type of every data item and expression at compile

time. Speciically, this means that the language
does not allow the use of types that are resolved

at runtime. For example, in JavaScript (a dynami-

cally typed language) a variable is declared by

using var, rather than a speciic type. A variable
can hold a string, a number, or a boolean at vari-

ous times in the same program. In contrast, static

types, such as those found in Java, force you to

declare the type when you deine the variable.
Static typing provides several important

advantages. The irst advantage is that the com-

piler can perform signiicant program verii-

cation. Because the compiler knows that i, for

example, has been declared an integer, it can

The Decline of Dynamic Typing
A feature once viewed as a convenience has become more troublesome than it’s worth.

#developersrule

Start here:
developer.oracle.com

Oracle Cloud.

Built for modern app dev.

Built for you.

Oracle Cloud delivers

high-performance and

battle-tested platform

and infrastructure services

for the most demanding

Java apps.

Java in
the Cloud

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

06

//from the editor /

check that all places where i is

used do expect or at least can

support an integer. Likewise,

static source code checkers are

much more capable when they

have complete type information.

A second key beneit is per-

formance. A runtime that must

determine the type of every vari-

able and the methods that are

available to it while the program

is running has signiicant over-

head that statically typed lan-

guages don’t require. In part, this

is why many of the traditional

dynamic languages—Python,

Perl, and Ruby—run much more

slowly than statically typed

options. An exception to this

might be JavaScript, which runs

much faster than many dynamic

languages. But this speed is a

comparatively recent advance

driven by massive investments by

Google and Microsoft into their

respective JavaScript engines.

A inal beneit, which in my
view is the one that has turned

the tide against dynamic lan-

guages, is maintainability. First,

for readability, it is much easier

to understand code if types are

declared statically because it is

then possible to tell exactly what

you’re looking at. For debugging,

this aspect is invaluable. Stepping

through code in which the con-

tents of a variable can change

type is not anybody’s idea of fun.

The dynamic aspect also intro-

duces a kind of uncertainty when

a bug is discovered. Say the vari-

able i, which previously held an

integer, now holds a string; was

that a spelling error by the devel-

oper, who meant to store it in u,

or was it an intentional reuse

of a variable? And if the latter,

how should you understand

other instances of i in the code-

base? These problems are bear-

able in the small but extremely

troublesome in the large. This

problem—precisely as it appears

in large projects—was the pri-

mary motivation for Microsoft to

create TypeScript, its superset of

JavaScript that added one princi-

pal feature: types.

Dynamic typing lourished
in popular languages in the mid-

1990s (Python, Ruby, JavaScript,

and PHP all appeared within

a four-year window), when PC

hardware had become power-

ful enough to run languages

that needed runtime support. At

the time, tools were primitive

and compile times were long, so

dynamic typing, which facilitated

quick and easy development, was

a welcome step forward.

But while dynamic languages

have retained considerable popu-

larity, some 15 years later the

cost of dynamic typing is more

apparent as codebases grow

larger, performance becomes

more important, and the cost

of maintenance rises steadily.

While those dynamically typed

languages will surely be with

us for a long time, it is unlikely

that many new languages will

embrace the model.

Andrew Binstock, Editor in Chief

javamag_us@oracle.com

@platypusguy

#developersrule

developer.oracle.com

Trials. Downloads.

Tutorials. Start here:

developer.oracle.com

The Oracle Developer

Gateway is the best place

to jump-start your modern

cloud development skills

with free trials, downloads,

tutorials, documentation,

and more.

The Best
Resource
for Modern
Cloud Dev

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
https://twitter.com/platypusguy
http://developer.oracle.com
http://developer.oracle.com

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

07

JAVA 9 MODULARITY
By Sander Mak and Paul Bakker

The introduction of modules in

Java 9 signiicantly changed how
Java applications are built and

delivered. These changes are par-

ticularly important for developers
of Java libraries, who need to work
out their strategy for delivering

//java books /

Java 9 Books
The wave of books for the new release is now arriving.

A s with all previous major releases, the arrival of Java 9 has unleashed a wave of books examining and

explaining its new features. The next few book columns will review important titles that you’ll want

to be aware of. In this installment, I look at two books, one speciically on Java 9 modules and one on the

larger language.

modular JAR iles while continu-

ing to provide the traditional bits

that run on JVMs prior to this

new release. Although you cer-

tainly can run apps on the Java 9
runtime without using modules,
it is expected that most sites will
switch over to module-based bina-

ries during the next few years.
Some sites, especially those wres-

tling with so-called “classpath
hell,” will likely ind incentive to
move to modules as quickly as pos-

sible. Those sites will discover a
trove of useful information in Mak
and Bakker’s new work.

The book opens with a detailed
explanation of what modules are
and how they work. The irst four
chapters cover the anatomy and
use of modules in detail, with

plenty of examples. It’s a very
readable guide. The remaining

180 pages are where the value is
really apparent. These pages start
out covering modularity patterns,
which are ways of architecting
modules so that they work together
ideally. The goal is to ind the bal-
ance between devising modules
that naturally (that is, conceptu-

ally) it together while creating the
minimum number of dependencies

on external modules. This tension
is familiar to Java architects

designing JARs. However, the
impetus to get the design right in

traditional JARs historically has
been more of a desirable goal than

an imperative. With modules, it

becomes a much more serious

proposition. The whole point of

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://shop.oreilly.com/product/0636920049494.do

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

08

//java books /

modularity is to manage depen-

dencies intelligently to get rid of
classpath conlicts and enable
delivery of modestly sized binaries.

The authors tackle many
aspects of the problem: splitting

modules, aggregating modules, and

creating new modules as facades.
They then move into technical
problems such as encapsulating

resources, after which they explore
building modules speciically for
use in containers.

The inal sections have pointers
for library designers and a handy
section on coniguring tools, such
as Maven and Gradle, for modules.

Wedged into all this goodness

is a lengthy discussion of how to
run Java 9 without migrating to
modules. This will be particularly
useful to sites that are planning

to adopt modules at some future

point and want to understand the
full scenario, starting with limited
migration to the new runtime and
then slowly implementing the con-

siderations presented in the rest of

the book.
Taken together, all these topics

represent a comprehensive over-

view of Java 9 modularity. The writ-
ing is clear and easy to understand,
and the authors do not expect the

reader to know much more than
how to program in Java; low-level
details (such as how classloaders
work) are explained on the ly. This
book was explicitly recommended
at Devoxx in November by mem-

bers of the core Java team, and I
fully agree with their assessment.
—Andrew Binstock

JAVA 9 FOR
PROGRAMMERS
(4TH EDITION)
By Paul Deitel and Harvey Deitel

This book is the irst of the com-

prehensive language tutorials

to come to market that includes
extensive coverage of Java 9. In this
context, it competes with other
1,000-page volumes that present

the entire language and its princi-

pal APIs. For example, it competes
with Cay Horstmann’s excellent

Core Java, which I’ve reviewed
previously in this column. Both
entrants are ine works, and
choosing one or the other depends

in large part on your personal pref-
erences. (Note: Core Java has not

been released for Java 9, although

an abridged version is available.)
The Deitels’ book is notable for

its hands-on orientation: it is code-

intensive with numerous examples.
It even includes a full project (com-

prising 77 pages) that goes from
initial design of an ATM machine

all the way through to comple-

tion. The design portion includes

introduction to the basic Uniied
Modeling Language (UML) dia-

grams, putting together the object-
oriented design, and incrementally
developing the code. Working
through this project is an excellent
education quite apart from the use

of Java.

Java 9’s most important fea-

tures receive rich coverage. For
example, the section on modules
is a full 52 pages that explore the
need for modules, how modules
work, and how to use them in your
own code. To get a sense of the
hands-on nature of the explana-

tions, see the lightly edited excerpt
from this section that ran in this

magazine. It was one of our most
popular articles in 2017.

This is the irst book I’ve
seen on Java 9 that has in-depth

coverage of JShell, the new REPL
introduced in Java 9. Its peda-

gogical beneits are not lost on
the authors, who drill into how
to make best use of it both as
a programming aid and as a

teaching tool.

In addition to the language
proper, the book covers JavaFX,
JDBC, and JPA. Each chapter
includes self-review exercises,
with accompanying solutions; the
explanations are sprinkled with
caveats for dangers, reminders

about good programming prac-

tices, and tips on writing idiomatic
Java. In other words, this is a com-

plete presentation.

I have only one gripe with this
volume, and that is the excessive
use of color highlighting in the

code. Even if you’re a fan of
brightly colored code, your eyes
will quickly tire of reading pale
blue text or squinting at bright
green comments on a canary-
yellow background. But if you can
handle that, you’ll have a very ine
book that does an excellent job of
presenting Java 9. —AB

http://www.oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.deitel.com/Books/Java/Java9forProgrammers/tabid/3686/Default.aspx
http://www.deitel.com/Books/Java/Java9forProgrammers/tabid/3686/Default.aspx
http://www.deitel.com/Books/Java/Java9forProgrammers/tabid/3686/Default.aspx
http://www.deitel.com/Books/Java/Java9forProgrammers/tabid/3686/Default.aspx
http://horstmann.com/javaimpatient/
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=18&page=0
http://www.javamagazine.mozaicreader.com/SeptOct2017#&pageSet=18&page=0

Written by leading experts in Java, Oracle Press books offer the most

definitive, complete, and up-to-date coverage of Java available.

www.OraclePressBooks.com • @OraclePressAvailable in print and eBook formats.

Your Destination for Oracle and Java Expertise

Java: A Beginner’s Guide,

 7th Edition

Herb Schildt

Revised to cover Java SE 9,

this book gets you started

programming in Java right away.

Java: The Complete

Reference,

10th Edition

Herb Schildt

Updated for Java SE 9, this book

shows how to develop, compile,

debug, and run Java programs.

OCA Java SE 8

Programmer I Exam Guide

(Exam 1Z0-808)

Kathy Sierra, Bert Bates

Get complete coverage of all

objectives for Exam 1Z0-808.

Electronic practice exam

questions are included.

Rapid Modernization

of Java

Applications

G. Venkat

Adopt a high-performance

enterprise Java application

modernization strategy.

http://www.oraclepressbooks.com

10

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

//events /

PHOTOGRAPH BY NDINHTRAN, ESQ./FLICKR

DevNexus

FEBRUARY 21–23

ATLANTA, GEORGIA

DevNexus is an international open source developer conference.

Scheduled sessions this year include “Java Microservices Patterns

& Practices with Kubernetes/OpenShift and Istio,” “Pragmatic

Microservices with Java EE and WildFly Swarm,” and “Practical JVM

Performance Tuning with jPDM.”

SnowCamp

JANUARY 24, WORKSHOPS

JANUARY 25–26, CONFERENCE

JANUARY 27, SOCIAL EVENT

GRENOBLE, FRANCE

SnowCamp is a developer con-

ference held in the French Alps

that focuses on Java, web, cloud,

DevOps, and software architec-

ture, with a mix of sessions in

French (the majority) and English.

The last day, dubbed “unconfer-

ence,” ofers a unique opportunity
to socialize with peers and speak-

ers on the ski slopes.

AgentConf

JANUARY 25–26, SPEAKER SESSIONS

JANUARY 27–28, SKIING/

NETWORKING

DORNBIRN AND LECH, AUSTRIA

AgentConf is two days of talks and

two days of skiing. It is a confer-

ence dedicated to software engi-

neering, focusing on JavaScript,

ReactJS, ReactNative, Node, and

similar technologies. The event

connects industry experts from

around the world who use these

technologies, and whose teams

build projects with them. Speaker

sessions are hosted at Spielboden

in Dornbirn, while skiing and net-

working take place in Lech.

DevConf.cz

JANUARY 26–28

BRNO, THE CZECH REPUBLIC

DevConf.cz is a free, three-day,

open source developer and

DevOps conference. All talks,

presentations, and workshops will

be conducted in English. Several

tracks are usually devoted specii-

cally to Java EE, and the confer-

ence can be attended online.

DeveloperWeek

FEBRUARY 3–4, HACKATHON

FEBRUARY 5, WORKSHOPS

FEBRUARY 5–7, CONFERENCE

FEBRUARY 6–7, EXPO

OAKLAND, CALIFORNIA

DeveloperWeek promises the

world’s largest developer expo and

conference series, gathering 8,000

participants for a week-long,

technology-neutral programming

conference and associated events.

The theme for 2018 is “Industrial

Revolution of Code,” and tracks

include artiicial intelligence,
serverless development, block-

chain, APIs and microservices,

and JavaScript.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
http://www.devnexus.com
http://snowcamp.io/en/
http://www.agent.sh
https://devconf.cz
http://www.developerweek.com

11

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

//events /

Domain-Driven Design Europe

JANUARY 30–31, WORKSHOPS

FEBRUARY 1–2, CONFERENCE

AMSTERDAM, THE NETHERLANDS

This software development and

engineering event spans analy-

sis, modeling and design, systems

thinking and complexity theory,

architecture, testing and refactor-

ing, visualization, and collabora-

tion. Scheduled workshops include

“Event-Driven Microservices with

Axon Framework” (Java experi-

ence required) and “Techniques
for Complex Domains.”

Jfokus

FEBRUARY 5–7

STOCKHOLM, SWEDEN

The annual Scandinavian Java

developer conference encom-

passes Java SE and Java EE, front-

end and web development, mobile,

cloud, IoT, and JVM languages

such as Scala and Clojure.

O’Reilly Software Architecture

Conference

FEBRUARY 25–26, TRAINING

FEBRUARY 26–28, TUTORIALS

AND CONFERENCE

NEW YORK, NEW YORK

PHOTOGRAPH BY BRIYYZ/FLICKR

This event promises four days of

in-depth professional training

that covers software architec-

ture fundamentals; real-world

case studies; and the latest trends

in technologies, frameworks,

and techniques. Scheduled ses-

sions include “High-performance

JavaScript Web App Architecture,”

“Pragmatic Event-driven

Microservices,” and “Evolving

Database Architecture.”

Embedded World

FEBRUARY 27–MARCH 1

NUREMBERG, GERMANY

The theme for the 16th annual

gathering of embedded system

developers is “Embedded Goes

Autonomous.” Topics include

IoT, autonomous systems, soft-

ware engineering, and safety

and security.

JSConf Iceland

MARCH 1–2

REYKJAVIK, ICELAND

JSConf will take place at Harpa,

one of Reykjavik’s most distin-

guished landmarks, and fea-

ture two tracks of educational

JavaScript talks by more than 30

speakers from around the world,

followed by evening parties

and socializing.

QCon London

MARCH 5–7, CONFERENCE

MARCH 8–9, WORKSHOPS

LONDON, ENGLAND

QCon conferences feature tracks

related to web development,

DevOps, cloud computing, and

more. Conirmed speakers this
year include Java Champion

Trisha Gee, Docker engineer Anil

Madhavapeddy, and Netlix cloud
platform engineer Allen Wang.

Voxxed Days Zürich

MARCH 8

ZÜRICH, SWITZERLAND

Voxxed Days Zürich shares the

Devoxx philosophy that con-

tent comes irst, and draws
internationally renowned and

local speakers. Sessions include

“The Power and Practicality of

Immutability” and “A Hitchhiker’s

Guide to the Functional Exception

Handling in Java.”

JavaLand

MARCH 13–15

BRÜHL, GERMANY

This conference features lectures

on subjects such as core Java

and JVM languages, micro-

services architecture, front-end

development, and much more.

Scheduled presentations include

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://dddeurope.com/2018/
https://www.jfokus.se/jfokus/index.jsp
https://conferences.oreilly.com/software-architecture/sa-ny
https://conferences.oreilly.com/software-architecture/sa-ny
http://www.embedded-world.eu/home.html
https://2018.jsconf.is/about/
https://qconlondon.com
https://voxxeddays.com/zurich/
https://www.javaland.eu/en/home/

12

//events /

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

“The Java 9 Module System

Beyond the Basics,” “Securing

JAX-RS,” and “Next-Generation

Web Components with Java

Vaadin Flow.”

JAX DevOps

APRIL 9 AND 12, WORKSHOPS

APRIL 10–11, CONFERENCE

LONDON, ENGLAND

This event for software experts

highlights the latest technologies

and methodologies for accelerated

delivery cycles, faster changes

in functionality, and increased

quality in delivery. More than 60
workshops, sessions, and key-

notes will be led by international

speakers and industry experts.

There’s also a two-in-one confer-

ence package that provides free

access to a parallel conference,

JAX Finance.

Voxxed Days Melbourne

MAY 2–3

MELBOURNE, AUSTRALIA

Voxxed Days is heading down

under to Melbourne, Australia.

The event will feature insights

into cloud, containers and infra-

structure, real-world architec-

tures, data and machine learning,

the modern web, and program-

ming languages.

Java Day Istanbul

MAY 5

ISTANBUL, TURKEY

Java Day Istanbul is one of the most

efective international community-
driven software conferences in

Turkey, organized by the Istanbul

Java User Group. The conference

helps developers network and learn

the newest technologies, including

Java, web, mobile, big data, cloud,

DevOps, and agile.

WeAreDevelopers World Congress

MAY 16–18

VIENNA, AUSTRIA

Billed as the largest developer con-

gress in Europe, WeAre Developers

expects more than 8,000 partici-

pants and more than 150 speakers

for keynotes, panel discussions,

workshops, hackathons, contests,

and exhibitions. The program

includes talks and sessions on

front-end and back-end develop-

ment, artiicial intelligence, robot-
ics, blockchain, security, and more.

JEEConf

MAY 18–19

KIEV, UKRAINE

JEEConf, the largest Java confer-

ence in Eastern Europe, focuses

on practical experience and devel-

opment. Topics include modern

approaches in development of

Oracle Code Events

Oracle Code is a free event for devel-
opers to learn about the latest pro-
gramming technologies, practices,
and trends. Learn from technical
experts, industry leaders, and other
developers in keynotes, sessions,
and hands-on labs. Experience cloud
development technology in the Code Lounge with workshops
and other live, interactive experiences and demos.

FEBRUARY 27, Los Angeles, California

MARCH 8, New York, New York

APRIL 4, Hyderabad, India

APRIL 10, Bangalore, India

APRIL 17, Boston, Massachusetts

MAY 17, Singapore

distributed, highly loaded, scal-

able, enterprise systems with Java

and innovations and new direc-

tions in application development

using Java.

J On The Beach

MAY 23–25

MALAGA, SPAIN

J On The Beach (JOTB) is an inter-

national workshop and conference

event for developers interested in

big data, JVM and .NET technolo-

gies, embedded and IoT develop-

ment, functional programming,

and data visualization.

jPrime

MAY 29–30

SOFIA, BULGARIA

jPrime will feature two days of

talks on Java, JVM languages,

mobile and web programming,

and best practices. The event is

run by the Bulgarian Java User

Group and provides opportunities

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://devops.jaxlondon.com
https://voxxeddays.com/melbourne/
https://javaday.istanbul/
https://www.wearedevelopers.com/congress/
http://jeeconf.com
https://developer.oracle.com/code
https://www.jonthebeach.com
https://jprime.io/

13

//events /

ORACLE.COM/JAVAMAGAZINE ///////////////////////////////// JANUARY/FEBRUARY 2018

for hacking and networking.

Riga Dev Days

MAY 29–31

RIGA, LATVIA

The biggest tech conference in

the Baltic States covers Java, .NET,

DevOps, cloud, software architec-

ture, and emerging technologies.

This year, Java Champion Simon

Ritter is scheduled to speak.

O’Reilly Fluent

JUNE 11–12, TRAINING

JUNE 12–14, TUTORIALS

AND CONFERENCE

SAN JOSE, CALIFORNIA

The O’Reilly Fluent conference

is devoted to practical train-

ing for building sites and apps

for the modern web. This event

is designed to appeal to applica-

tion, web, mobile, and interactive

developers, as well as engineers,

architects, and UI/UX designers.

The conference will be collocated

with O’Reilly’s Velocity confer-

ence for system engineers, appli-

cation developers, and DevOps

professionals.

EclipseCon France

JUNE 13–14

TOULOUSE, FRANCE

EclipseCon France is the Eclipse

Foundation’s event for the entire

European Eclipse community.

The conference program includes

technical sessions on current

topics pertinent to developer

communities, such as modeling,

embedded systems, data analytics

and data science, IoT, DevOps, and

more. Attendance at EclipseCon

France qualiies for French
training credits.

JavaOne

OCTOBER 28–NOVEMBER 1

SAN FRANCISCO, CALIFORNIA

Whether you are a seasoned

coder or a new Java programmer,

JavaOne is the ultimate source of

technical information and learn-

ing about Java. For ive days, the
world’s largest collection of Java

developers gather to talk about

all aspects of Java and JVM lan-

guages, development tools, and

trends in programming. Tutorials

on numer ous related Java and JVM

topics are ofered.

Are you hosting an upcoming

Java conference that you would

like to see included in this calen-

dar? Please send us a link

and a description of your event

at least 90 days in advance at

javamag_us@oracle.com. Other

ways to reach us appear on the

last page of this issue.

//user groups /

THE DENVER JUG
The irst Denver Java
User Group (DJUG) meet-

ing was held in November

1995 as an opportunity for

technical discussion of

the Java language, APIs,

applets, and applications.

Since then, the DJUG

has grown to more than

2,500 members.

Its goal is to promote

the use of Java, educate users of Java technology, provide a

venue for the exchange of ideas, and create a community for

Java developers in the Denver, Colorado, area.

Membership in the DJUG is free, and all Denver Java

enthusiasts are encouraged to join. DJUG members have

access to conference discounts for events such as the No

Fluf Just Stuf Software Symposium, UberConf, and Devoxx.
Meeting attendees also have the opportunity to win discounts

on software-related products.

DJUG meetings are held on the second Wednesday of

every month, and the typical meeting has between 70 and

120 attendees. Presentation topics from the past year include

machine learning, microservices, Project Jigsaw, hack-proof

security, and lightning talks.

Organized and run by volunteers, the meetings follow a

typical format: networking time, speaker presentation, door

prizes, and then more networking at a local restaurant. Door

prizes and food and beverages for the networking sessions

are provided with the generous help of sponsors.

Follow the DJUG’s activities by joining its meetup group

or visiting its website. Contact the DJUG on Twitter with pro-

posals for talks.

https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://oracle.com/javamagazine
https://rigadevdays.lv
https://conferences.oreilly.com/fluent/fl-ca
https://www.eclipsecon.org/france2018/
https://www.oracle.com/javaone/index.html
mailto:javamag_us%40oracle.com?subject=
https://www.meetup.com/DenverJavaUsersGroup/
https://www.meetup.com/DenverJavaUsersGroup/
http://denverjug.org
http://www.twitter.com/denverjug

https://voxxeddays.com

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

15

//reactive programming /

R
eactive programming is a term that means slightly diferent things to diferent

people. Central to the concept, though, is a model of computing that is alerted to

certain kinds of events, can process or ignore those events, and works with the

event source to manage the number of events to be processed.

In practice, this model rests on several technologies: a message-passing

framework, a subscription-based notiication system, and an asynchronous execution of the

event-driven tasks. The beneit is a loosely coupled implementation that is scalable and tends

to isolate failures. The scalability here refers to the ability to scale horizontally quickly, and

it anticipates handling the number of events associated with big data—millions to billions of

incoming events. This aspect in particular is what makes the reactive model

diferent from its familiar forebear, the event loop in GUI development.

In this issue, we provide an overview of reactive development (page 16)

and then do a deep dive into RxJava (page 32), one of the leading libraries

for developing reactive applications on the JVM. We follow that up by look-

ing at the reactive capabilities built into the most recent release of Spring

5.0 (page 61). Finally, we examine a slightly diferent model for develop-

ing CRUD applications, called Command Query Responsibility Segregation,

or CQRS (page 69), which while not reactive per se implements an approach

that overlaps with reactive programming.

It might seem that reactive programming is a design that would lead

naturally to microservice implementation. And indeed it is.

What Is Reactive
Programming?

REACTIVE PROGRAMMING WITH

JAX-RS 16

USING VERT.X AND RXJAVA 32

REACTIVE SPRING 5.0 61

CQRS 69

ART BY PEDRO MURTEIRA

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

16

//reactive programming /

Reactive programming sounds like the name of an emerging programming paradigm at irst,

but it refers to a programming technique that ofers an event-driven approach for handling

asynchronous streams of data. Based on data that lows continuously, reactive systems react to

the data by executing a series of events.

Reactive programming follows the Observer design pattern, which can be deined as fol-

lows: when there is a change of state in one object, the other objects are notiied and updated

accordingly. Therefore, instead of polling events for the changes, events are pushed asynchro-

nously so the observers can process them. In this example, observers are functions that are

executed when an event is emitted. And the data stream that I mentioned is the actual observ-

able that will be observed.

Nearly all languages and frameworks have adopted this programming approach in their

ecosystems, and Java has kept the pace up in its latest releases. In this article, I explain how

reactive programming can be applied by using the latest version of JAX-RS from Java EE 8 and

by using Java 8 features under the hood.

The Reactive Manifesto

The Reactive Manifesto lists four fundamental aspects an application must have in order to be

more lexible, loosely coupled, and easily scalable—and, therefore, capable of being reactive. It

says an application should be responsive, elastic (that is, scalable), resilient, and message-driven.

Having an application that is truly responsive is the foundational goal. Suppose you have

an application that heavily depends on one big thread to handle user requests, and this thread

Reactive Programming
with JAX-RS
Using an async approach and staging to develop responsive reactive apps

MERT ÇALIŞKAN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.reactivemanifesto.org

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

17

//reactive programming /

typically sends responses back to its originating

requesters after doing its work. When the applica-

tion gets more requests than it can handle, this

thread will start to be a bottleneck and the appli-

cation itself will not be able to be as responsive as

it was before. To have the application be respon-

sive, you need to make it scalable and resilient,

because responsiveness is possible only with both scalability and resilience. Resilience occurs

when an application exhibits features such as auto-recovery and self-healing. In most devel-

opers’ experience, only a message-driven architecture can enable a scalable, resilient, and

responsive application.

Reactive programming has started to be baked into the bits of the Java 8 and Java EE 8

releases. The Java language introduced concepts such as CompletionStage and its implementa-

tion, CompletableFuture, and Java EE started to employ these features in speciications such as

the Reactive Client API of JAX-RS.

JAX-RS 2.1 Reactive Client API

Let’s look at how reactive programming can be used in Java EE 8 applications. To follow along,

you’ll need familiarity with the basic Java EE APIs.

JAX-RS 2.1 introduced a new way of creating a REST client with support for reactive pro-

gramming. The default invoker implementation provided by JAX-RS is synchronous, which

means the client that is created will make a blocking call to the server endpoint. An example for

this implementation is shown in Listing 1.

Listing 1.

Response response =

 ClientBuilder.newClient()

 .target("http://localhost:8080/service-url")

 .request()

The reactive implementation might
look more complicated at first glance, but
after closer examination you will see that
it’s fairly straightforward.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

18

//reactive programming /

 .get();

As of version 2.0, JAX-RS provides support for creating an asynchronous invoker on the client

API by just invoking the async() method, as shown in Listing 2.

Listing 2.

Future<Response> response =

 ClientBuilder.newClient()

 .target("http://localhost:8080/service-url")

 .request()

 .async()

 .get();

Using an asynchronous invoker on the client returns an instance of Future with type javax.ws.rs

.core.Response. This would either result in polling the response, with a call to future.get(), or

registering a callback that would be invoked when the HTTP response is available. Both of these

implementation approaches are suitable for asynchronous programming, but things usually

get complicated when you want to nest callbacks or you want to add conditional cases in those

asynchronous execution lows.

JAX-RS 2.1 ofers a reactive way to overcome these problems with the new JAX-RS Reactive

Client API for building the client. It’s as simple as invoking the rx() method while building the

client. In Listing 3, the rx() method returns the reactive invoker that exists on the client’s run-

time and the client returns a response of type CompletionStage.rx(), which enables the switch

from sync to async invoker by this simple invocation.

Listing 3.

CompletionStage<Response> response =

 ClientBuilder.newClient()

 .target("http://localhost:8080/service-url")

 .request()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

19

//reactive programming /

 .rx()

 .get();

CompletionStage<T> is a new interface introduced in Java 8, and it represents a computation that

can be a stage within a larger computation, as its name implies. It’s the only reactive portion of

Java 8 that made it into the JAX-RS.

After getting a response instance, I can just invoke thenAcceptAsync(), where I can provide

the code snippet that would be executed asynchronously when the response becomes available,

such as shown in Listing 4.

Listing 4.

response.thenAcceptAsync(res -> {

 Temperature t = res.readEntity(Temperature.class);

 //do stuff with t

});

Adding Reactive Goodness to a REST Endpoint

The reactive approach is not limited to the client side in JAX-RS; it’s also possible to leverage it

on the server side. To demonstrate this, I will irst create a simple scenario where I can query a

list of locations from one endpoint. For each location, I will make another call to another end-

point with that location data to get a temperature value. The interaction of the endpoints would

be as shown in Figure 1.

Figure 1. Interaction between endpoints

Forecast
Service

Location
Service

Temperature
Service

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

20

//reactive programming /

First, I simply deine the domain model and then I deine the services for each domain

model. Listing 5 deines the Forecast class, which wraps the Temperature and Location classes.

Listing 5.

public class Temperature {

 private Double temperature;

 private String scale;

 // getters & setters

}

public class Location {

 String name;

 public Location() {}

 public Location(String name) {

 this.name = name;

 }

 // getters & setters

}

public class Forecast {

 private Location location;

 private Temperature temperature;

 public Forecast(Location location) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

21

//reactive programming /

 this.location = location;

 }

public Forecast setTemperature(

 final Temperature temperature) {

 this.temperature = temperature;

 return this;

 }

 // getters

}

For wrapping a list of forecasts, the ServiceResponse class is implemented in Listing 6.

Listing 6.

public class ServiceResponse {

 private long processingTime;

 private List<Forecast> forecasts = new ArrayList<>();

 public void setProcessingTime(long processingTime) {

 this.processingTime = processingTime;

 }

 public ServiceResponse forecasts(

 List<Forecast> forecasts) {

 this.forecasts = forecasts;

 return this;

 }

 // getters

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

22

//reactive programming /

}

LocationResource, which is shown in Listing 7, deines three sample locations returned with the

path /location.

Listing 7.

@Path("/location")

public class LocationResource {

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public Response getLocations() {

 List<Location> locations = new ArrayList<>();

 locations.add(new Location("London"));

 locations.add(new Location("Istanbul"));

 locations.add(new Location("Prague"));

 return Response.ok(

 new GenericEntity<List<Location>>(locations){})

 .build();

 }

}

TemperatureResource, shown in Listing 8, returns a randomly generated temperature value

between 30 and 50 for a given location. A delay of 500 ms is added within the implementation to

simulate the sensor reading.

Listing 8.

@Path("/temperature")

public class TemperatureResource {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

23

//reactive programming /

 @GET

 @Path("/{city}")

 @Produces(MediaType.APPLICATION_JSON)

 public Response getAverageTemperature(

 @PathParam("city") String cityName) {

 Temperature temperature = new Temperature();

 temperature.setTemperature(

 (double) (new Random().nextInt(20)+30));

 temperature.setScale("Celsius");

 try {

 Thread.sleep(500);

 } catch (InterruptedException ignored) {}

 return Response.ok(temperature).build();

 }

}

I will irst show the implementation for the synchronous ForecastResource (shown in Listing 9),

which irst fetches all locations. Then, for each location, it invokes the temperature service to

retrieve the Celsius value.

Listing 9.

@Path("/forecast")

public class ForecastResource {

 @Uri("location")

 private WebTarget locationTarget;

 @Uri("temperature/{city}")

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

24

//reactive programming /

 private WebTarget temperatureTarget;

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public Response getLocationsWithTemperature() {

 long startTime = System.currentTimeMillis();

 ServiceResponse response = new ServiceResponse();

 List<Location> locations = locationTarget.request()

 .get(new GenericType<List<Location>>() {});

 locations.forEach(location -> {

 Temperature temperature = temperatureTarget

 .resolveTemplate("city", location.getName())

 .request()

 .get(Temperature.class);

 response.getForecasts().add(

 new Forecast(location)

 .setTemperature(temperature));

 });

 long endTime = System.currentTimeMillis();

 response.setProcessingTime(endTime - startTime);

 return Response.ok(response).build();

 }

}

When the forecast endpoint is requested as /forecast, you should see output similar to Listing 10.

Notice that the processing time of the request took 1,533 ms, which makes sense because request-

ing temperature values for three diferent locations synchronously would add up to 1,500 ms.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

25

//reactive programming /

Listing 10.

{

 "forecasts": [

 {

 "location": {

 "name": "London"

 },

 "temperature": {

 "scale": "Celsius",

 "temperature": 33

 }

 },

 {

 "location": {

 "name": "Istanbul"

 },

 "temperature": {

 "scale": "Celsius",

 "temperature": 38

 }

 },

 {

 "location": {

 "name": "Prague"

 },

 "temperature": {

 "scale": "Celsius",

 "temperature": 46

 }

 }

],

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

26

//reactive programming /

 "processingTime": 1533

}

So far, so good. Now it’s time to introduce reactive programming on the server side, where a

call for each location could be done in parallel after getting all the locations. This can deinitely

enhance the synchronous low shown earlier. This is done in Listing 11, which deines a reactive

version of this forecast service.

Listing 11.

@Path("/reactiveForecast")

public class ForecastReactiveResource {

 @Uri("location")

 private WebTarget locationTarget;

 @Uri("temperature/{city}")

 private WebTarget temperatureTarget;

 @GET

 @Produces(MediaType.APPLICATION_JSON)

 public void getLocationsWithTemperature(

 @Suspended final AsyncResponse async) {

 long startTime = System.currentTimeMillis();

 // Create a stage on retrieving locations

 CompletionStage<List<Location>> locationCS =

 locationTarget.request()

 .rx()

 .get(new GenericType<List<Location>>() {});

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

27

//reactive programming /

 // By composing another stage on the location stage

 // created above, collect the list of forecasts

 // as in one big completion stage

 final CompletionStage<List<Forecast>> forecastCS =

 locationCS.thenCompose(locations -> {

 // Create a stage for retrieving forecasts

 // as a list of completion stages

 List<CompletionStage<Forecast>> forecastList =

 // Stream locations and process each

 // location individually

 locations.stream().map(location -> {

 // Create a stage for fetching the

 // temperature value just for one city

 // given by its name

 final CompletionStage<Temperature> tempCS =

 temperatureTarget

 .resolveTemplate("city",

 location.getName())

 .request()

 .rx()

 .get(Temperature.class);

 // Then create a completable future that

 // contains an instance of forecast

 // with location and temperature values

 return CompletableFuture.completedFuture(

 new Forecast(location))

 .thenCombine(tempCS,

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

28

//reactive programming /

 Forecast::setTemperature);

 }).collect(Collectors.toList());

 // Return a final completable future instance

 // when all provided completable futures are

 // completed

 return CompletableFuture.allOf(

 forecastList.toArray(

 new CompletableFuture[forecastList.size()]))

 .thenApply(v -> forecastList.stream()

 .map(CompletionStage::toCompletableFuture)

 .map(CompletableFuture::join)

 .collect(Collectors.toList()));

 });

 // Create an instance of ServiceResponse,

 // which contains the whole list of forecasts

 // along with the processing time.

 // Create a completed future of it and combine to

 // forecastCS in order to retrieve the forecasts

 // and set into service response

 CompletableFuture.completedFuture(

 new ServiceResponse())

 .thenCombine(forecastCS,

 ServiceResponse::forecasts)

 .whenCompleteAsync((response, throwable) -> {

 response.setProcessingTime(

 System.currentTimeMillis() - startTime);

 async.resume(response);

 });

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

29

//reactive programming /

The reactive implementation might

look more complicated at irst glance,

but after closer examination you will

see that it’s fairly straightforward.

Within the ForecastReactiveResource

implementation, I irst create a client

invocation on the location services

with the help of the JAX-RS Reactive Client API. As I mentioned previously, this is an addition to

Java EE 8, and it helps to create a reactive invoker simply by use of the rx() method.

Now I compose another stage based on location to collect the list of forecasts. They will be

stored in one big completion stage, named forecastCS, as a list of forecasts. I will ultimately

create the response of the service call by using only forecastCS.

Let’s continue by collecting the forecasts as a list of completion stages as deined in the

forecastList variable. To create the completion stages for each forecast, I stream on the loca-

tions and then create the tempCS variable by again using the JAX-RS Reactive Client API, which

will invoke the temperature service with city name. I use the resolveTemplate() method here to

build a client, and that enables me to pass the name of the city to the builder as a parameter.

As a last step of streaming on locations, I do a call to CompletableFuture.completedFuture()

by providing a newly created instance of Forecast as the parameter. I combine this future with

the tempCS stage so that I have the temperature value for the iterated locations.

The CompletableFuture.allOf() method in Listing 11 transforms the list of completion stages

to forecastCS. Execution of this step returns the big completable future instance when all pro-

vided completable futures are completed.

The response from the service is an instance of the ServiceResponse class, so I create a com-

pleted future for that as well, and then I combine the forecastCS completion stage with the list

of forecasts and calculate the response time of the service.

Of course, this reactive programming makes only the server side execute asynchronously;

the client side will be blocked until the server sends the response back to the requester. In

order to overcome this problem, Server Sent Events (SSEs) can also be used to partially send

Reactive programming is more than enhancing
the implementation from synchronous to asynchronous;
it also eases development with concepts such as
nesting stages.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

30

//reactive programming /

the response once it’s available so that for each location, the temperature values can be pushed

to the client one by one. The output of ForecastReactiveResource will be something similar to

Listing 12. As shown in the output, the processing time is 515 ms, which is the ideal execution

time for retrieving a temperature value for one location.

Listing 12.

{

 "forecasts": [

 {

 "location": {

 "name": "London"

 },

 "temperature": {

 "scale": "Celsius",

 "temperature": 49

 }

 },

 {

 "location": {

 "name": "Istanbul"

 },

 "temperature": {

 "scale": "Celsius",

 "temperature": 32

 }

 },

 {

 "location": {

 "name": "Prague"

 },

 "temperature": {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

31

//reactive programming /

 "scale": "Celsius",

 "temperature": 45

 }

 }

],

 "processingTime": 515

}

Conclusion

Throughout the examples in this article, I irst showed the synchronous way to retrieve the

forecast information by choreographing location and temperature services. Then I moved on

to the reactive approach in order to have the asynchronous processing occur between service

calls. When you leverage the use of the JAX-RS Reactive Client API of Java EE 8 and classes such

as CompletionStage and CompletableFuture shipping with Java 8, the power of asynchronous pro-

cessing is unleashed with the help of reactive-style programming.

Reactive programming is more than enhancing the implementation from a synchro-

nous to an asynchronous model; it also eases development with concepts such as nesting

stages. The more it is adopted, the easier it will be to handle complex scenarios in parallel

programming. </article>

Mert Çalişkan (@mertcal) is a Java Champion and a coauthor of PrimeFaces Cookbook (Packt Publishing,

2013) and Beginning Spring (Wiley Publications, 2015). He currently is working on his latest book, Java EE 8

Microservices, and he works as a developer on the Payara Server inside the Payara Foundation.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

32

//reactive programming /

Eclipse Vert.x is a toolkit for implementing reactive and distributed systems on top of the

JVM. It was designed from the start with a reactive design and asynchrony in mind. Vert.x is

also about freedom. It does not tell you how to shape your system; you are in charge. Its exten-

sive ecosystem provides everything you need to build responsive, distributed, and interactive

applications. This article describes how Vert.x combines an asynchronous execution model and

a reactive implementation to let you build applications that can handle uncertain and ever-

evolving development needs.

What Does It Mean to Be Reactive?

Let’s start from the beginning: what does reactive actually mean? The Oxford English Dictionary

deines reactive as “showing a response to a stimulus.” So, by extension, reactive software can

be deined as software that reacts to stimuli. But using that deinition, software has been reactive

since the early age of computers. Software is designed to react to user demands such as input,

clicks, commands, and so on.

However, with the rise of distributed systems, applications started reacting to messages

sent by peers and by failure events. The recent reactive renaissance is mainly due to the dif-

iculties of building robust distributed systems. As developers painfully learned, distributed

systems are diicult, and they fail for many reasons such as capacity issues, network outages,

hardware problems, and bugs. In response, a few years ago, the Reactive Manifesto deined

reactive systems as distributed systems with the following characteristics:

■■ Message-driven: They use asynchronous message passing to communicate.
JULIEN PONGE PHOTOGRAPH BY

MATT BOSTOCK/GETTY IMAGES

Going Reactive with Eclipse Vert.x
and RxJava
Building responsive, scalable apps with one of the most popular reactive libraries

CLEMENT ESCOFFIER

JULIEN PONGE

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://vertx.io
http://vertx.io
https://www.reactivemanifesto.org/

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

33

//reactive programming /

■■ Elastic: They stay responsive under varying workloads.

■■ Resilient: They stay responsive in the face of failure.

■■ Responsive: They respond in a timely manner.

This architectural style promotes a new way to build distributed systems, infusing asynchrony

into the core of these systems. While reactive systems are described as “distributed systems

done right,” they can be diicult to build. Taming the asynchronous beast is particularly dii-

cult from the developer standpoint. In addition, the traditional threading model (one thread per

request) tends to create memory and CPU hogs, and, when dealing with asynchronous code, this

approach is particularly ineicient.

Several development models have emerged to make the development of asynchronous

applications easier, including actors, ibers, coroutines, and reactive programming. This article

focuses on the latter.

Reactive programming (and its main derivative, Reactive eXtensions, or RX) is an asyn-

chronous programming paradigm focused on the manipulation of data streams. It provides an

API to compose asynchronous and event-driven applications. When using reactive program-

ming, you are handling streams of data in which data lows. You observe these streams and

react when new data is available.

But data streams have an inherent law. What happens if you receive too many messages

and you can’t process them in time? You could put a bufer between the source and the han-

dler, but it would help only with handling small bumps. Dropping incoming data is also a solu-

tion, but that is not always acceptable. Ultimately, you need a way to control the pace. This is

what the reactive streams speciication proposes. It deines an asynchronous and nonblocking

back-pressure protocol. In this low of control, the consumer notiies the producer of its current

capacity. So, the producer does not send too much data on the stream, and your system auto-

adapts to its capacity without burning.

Why Do Reactive Systems Matter?

Why did reactive programming become so prevalent in the past few years? For a very long

time, most applications have been developed using a synchronous execution model and

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

34

//reactive programming /

most APIs have been designed to follow

this approach.

However, computer systems and

distribution systems are asynchronous.

Synchronous processing is a simpliica-

tion made to provide ease of comprehen-

sion. For years, the asynchronous nature

of systems has been ignored, and now

it’s time to catch up. Many modern applications are relying on I/O operations, such as remote

invocations or access to the ile system. Because of the synchronous nature of application

code, however, these I/O operations are designed to be blocking, so the application waits for

a response before it can continue its execution. To enable concurrency, the application relies

on multithreading and increases the number of threads. But, threads are expensive. First, the

code has to protect itself from concurrent access to its state. Second, threads are expensive in

terms of memory and—often overlooked—in CPU time, because switching between threads

requires CPU cycles.

Therefore, a more eicient model is needed. The asynchronous execution model promotes

a task-based concurrency in which a task releases the thread when it cannot make progress

anymore (for instance, it invokes a remote service using nonblocking I/O and will be notiied

when the result is available). Thus, the same thread can switch to another task. As a result, a

single thread can handle several interleaved tasks.

Traditional development and execution paradigms are not able to exploit this new model.

However, in a world of cloud and containers, where applications are massively distributed and

interconnected and they must handle continuously growing traic, the promise made by reac-

tive systems is a perfect match. But, implementing reactive systems requires two shifts: an

execution shift to use an asynchronous execution model and a development shift to write asyn-

chronous APIs and applications. This is what Eclipse Vert.x ofers. In the rest of this article, we

present how Vert.x combines both to give you superpowers.

Implementing reactive systems requires
two shifts: an execution shift to use an
asynchronous execution model and a development
shift to write asynchronous APIs and applications.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

35

//reactive programming /

RxJava: The Reactive Programming Toolbox for Java

Let’s focus on reactive programming—a development model for writing asynchronous code.

When using reactive programming, the code manipulates streams of data. The data is gener-

ated by publishers. The data lows between a publisher and consumers, which process the data.

Consumers observing a data stream are notiied when a new item is available, when the stream

completes, and when an error is caught. To avoid overloading consumers, a back-pressure pro-

tocol is required to control the amount of data lowing in the stream. This is generally handled

transparently by the reactive framework.

There are several implementations of the reactive programming paradigm. RxJava is a

straightforward implementation of reactive extensions (RX) for the Java programming lan-

guage. It is a popular library for reactive programming that can be used to develop applications

in networked data processing, graphical user interfaces with JavaFX, and Android apps. RxJava

is the principal toolkit for reactive libraries in Java, and it provides ive data types to describe

data publishers depending on the types of data streams, as shown in Table 1.

These types represent data publishers and convey data processed by consumers observ-

ing them. Depending on the number of items lowing in the stream, the type is diferent. For

streams with a bounded or unbounded sequence of items, the types Observable and Flowable

are used.

The diference between Observable and Flowable is that Flowable handles back-pressure

(that is, it implements a reactive streams protocol) while Observable does not. Flowable is better

Table 1. RxJava reactive publisher types

USE CASE NUMBER OF EXPECTED ITEMS
IN THE STREAM

RXJAVA TYPES

NOTIFICATION, DATA FLOW 0..N Observable, Flowable

ASYNCHRONOUS OPERATION PRODUCING
(MAYBE) A RESULT

1..1
0..1

Single

Maybe

ASYNCHRONOUS OPERATION THAT DOES
NOT PRODUCE A RESULT

0 Completable

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

36

//reactive programming /

suited for large streams of data coming from a source that supports back-pressure (for exam-

ple, a TCP connection), while Observable is better suited at handling so-called “hot” observ-

ables for which back-pressure cannot be applied (such as GUI events and other user actions).

It is important to note that not all streams can support back-pressure. In fact, most of the

streams conveying data captured in the physical world are not capable of this. Reactive pro-

gramming libraries propose strategies such as bufers and acceptable data loss for handling

these cases.

Getting started with RxJava. It’s time to see some code and make reactive clearer. The com-

plete project source code is available online. Clone or download this project and check the

content of the rxjava-samples subproject. It uses RxJava 2.x and the logback-classic logging

library. You will see later how it helps you understand threading with RxJava.

In the previous section, we briely examined the diferent reactive types proposed by

RxJava. The following class creates instances of these types and applies some basic operations:

package samples;

import io.reactivex.Completable;

import io.reactivex.Flowable;

import io.reactivex.Maybe;

import io.reactivex.Single;

import io.reactivex.functions.Consumer;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

public class RxHello {

private static final Logger logger =

 LoggerFactory.getLogger(RxHello.class);

public static void main(String[] args) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jponge/oracle-javamag-vertx-rxjava/tree/master/vertx-samples
https://logback.qos.ch/
https://logback.qos.ch/

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

37

//reactive programming /

 Single.just(1)

 .map(i -> i * 10)

 .map(Object::toString)

 .subscribe((Consumer<String>) logger::info);

 Maybe.just("Something")

 .subscribe(logger::info);

 Maybe.never()

 .subscribe(o -> logger.info("Something is here..."));

 Completable.complete()

 .subscribe(() -> logger.info("Completed"));

 Flowable.just("foo", "bar", "baz")

 .filter(s -> s.startsWith("b"))

 .map(String::toUpperCase)

 .subscribe(logger::info);

 }

}

Running this example yields output similar to this:

11:24:28.638 [main] INFO samples.RxHello - 10

11:24:28.661 [main] INFO samples.RxHello - Something

11:24:28.672 [main] INFO samples.RxHello - Completed

11:24:28.716 [main] INFO samples.RxHello - BAR

11:24:28.716 [main] INFO samples.RxHello - BAZ

It is important to note that as with Java collection streams, no processing happens until an end

event takes place. In RxJava, that event is a subscription. In this example, we used subscribe()

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

38

//reactive programming /

with a single parameter, which is a lambda called to receive each event. The following are other

forms of Subscribe depending on the events the consumer wants to receive:

■■ No arguments, which just triggers the processing

■■ Two arguments to process events and errors

■■ Three arguments to process events, to process errors, and to provide notiication when the

processing is complete

Creating publishers and recovering from errors. Of course, RxJava would be quite limited if cre-

ating data streams such as Observables were limited to calling the just() factory method as we

did in the previous example. All types of publishers support a create() method to deine the

code to deal with new subscribers:

List<String> data =

 Arrays.asList("foo", "bar", "baz");

Random random = new Random();

Observable<String> source =

 Observable.create(subscriber -> {

 for (String s : data) {

 if (random.nextInt(6) == 0) {

 subscriber.onError(

 new RuntimeException("Bad luck for you..."));

 }

 subscriber.onNext(s);

 }

 subscriber.onComplete();

});

The example above creates an Observable of String values (in other words, a stream of String

values), where the values are being picked from a predeined list. We also introduced random

failures. The following three methods can be used to notify subscribers:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

39

//reactive programming /

■■ onNext, when a new value is sent to the subscriber, possibly passing through intermediate

operators before it reaches the subscriber

■■ onComplete to indicate that no more values will be sent

■■ onError to indicate that an error happened and that no further value will be sent; any

Throwable can be used as an error value

Note that create() is not the only way to deine custom publishers, but presenting all

options would be outside the scope of this article.

Because there is a good probability that errors will happen, we can test this Observable

10 times:

for (int i = 0; i < 10; i++) {

 logger.info("=======================================");

 source.subscribe(

 next -> logger.info("Next: {}", next),

 error -> logger.error("Whoops"),

 () -> logger.info("Done"));

}

We can observe successful completions as well as errors in the execution traces:

11:51:47.469 [main] INFO samples.RxCreateObservable -

=======================================

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: foo

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: bar

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: baz

11:51:47.469 [main] INFO samples.RxCreateObservable - Done

11:51:47.469 [main] INFO samples.RxCreateObservable -

=======================================

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: foo

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: bar

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

40

//reactive programming /

11:51:47.469 [main] ERROR samples.RxCreateObservable - Whoops

11:51:47.469 [main] INFO samples.RxCreateObservable -

=======================================

11:51:47.469 [main] INFO samples.RxCreateObservable - Next: foo

11:51:47.469 [main] ERROR samples.RxCreateObservable - Whoops

RxJava supports various ways to recover from errors, such as switching to another stream or

providing a default value. Another option is to use retry():

source

 .retry(5)

 .subscribe(next -> logger.info("Next: {}", next),

 error -> logger.error("Whoops"),

 () -> logger.info("Done"));

Above, we speciied that in case of error, we should retry at most ive times with new subscrip-

tions. Note that retries might use another thread for execution. Because errors are random,

your exact output trace will vary across executions, but the following output shows an example

of retries:

11:51:47.472 [main] INFO samples.RxCreateObservable - Next: foo

11:51:47.472 [main] INFO samples.RxCreateObservable - Next: bar

11:51:47.472 [main] INFO samples.RxCreateObservable - Next: foo

11:51:47.472 [main] INFO samples.RxCreateObservable - Next: bar

11:51:47.472 [main] INFO samples.RxCreateObservable - Next: baz

11:51:47.472 [main] INFO samples.RxCreateObservable - Done

RxJava and threads. So far, we haven’t cared much about multithreading. Let’s take another

example and run it:

Flowable.range(1, 5)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

41

//reactive programming /

 .map(i -> i * 10)

 .map(i -> {

 logger.info("map({})", i);

 return i.toString();

 })

 .subscribe(logger::info);

Thread.sleep(1000);

You can see from the logs that all processing happens on the main thread:

12:01:01.097 [main] INFO samples.RxThreading - map(10)

12:01:01.100 [main] INFO samples.RxThreading - 10

12:01:01.100 [main] INFO samples.RxThreading - map(20)

12:01:01.100 [main] INFO samples.RxThreading - 20

12:01:01.100 [main] INFO samples.RxThreading - map(30)

12:01:01.100 [main] INFO samples.RxThreading - 30

12:01:01.100 [main] INFO samples.RxThreading - map(40)

12:01:01.100 [main] INFO samples.RxThreading - 40

12:01:01.100 [main] INFO samples.RxThreading - map(50)

12:01:01.100 [main] INFO samples.RxThreading - 50

In fact, both the operator processing and the subscriber notiications happen from that main

thread. By default, a publisher (and the chain of operators that you apply to it) will do its work,

and will notify its consumers, on the same thread on which its subscribe method is called.

RxJava ofers Schedulers to oload work to specialized threads and executors. Schedulers are

responsible for notifying the subscribers on the correct thread even if it’s not the thread used

to call subscribe.

The io.reactivex.schedulers.Schedulers class ofers several schedulers, with the most

interesting being these:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

42

//reactive programming /

■■ computation() for CPU-intensive work with no blocking I/O operations

■■ io() for all blocking I/O operations

■■ single(), which is a shared thread for operations to execute in order

■■ from(executor) to oload all scheduled work to a custom executor

Now, back to our previous example, we can specify how the subscription and observation will

be scheduled:

Flowable.range(1, 5)

 .map(i -> i * 10)

 .map(i -> {

 logger.info("map({})", i);

 return i.toString();

 })

 .observeOn(Schedulers.single())

 .subscribeOn(Schedulers.computation())

 .subscribe(logger::info);

Thread.sleep(1000);

logger.info("===================================");

The subscribeOn method speciies the scheduling for the subscription and operator processing,

while the observeOn method speciies the scheduling for observing the events. In this example,

the map operations are invoked on the computation thread pool while the subscribe callback

(logger::info) is invoked by a diferent thread (which does not change). Running the example

gives an execution trace where you clearly see diferent threads being involved:

12:01:03.127 [RxComputationThreadPool-1] INFO

samples.RxThreading - map(10)

12:01:03.128 [RxComputationThreadPool-1] INFO

samples.RxThreading - map(20)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

43

//reactive programming /

12:01:03.128 [RxSingleScheduler-1] INFO

samples.RxThreading - 10

12:01:03.128 [RxComputationThreadPool-1] INFO

samples.RxThreading - map(30)

12:01:03.128 [RxSingleScheduler-1] INFO

samples.RxThreading - 20

12:01:03.128 [RxComputationThreadPool-1] INFO

samples.RxThreading - map(40)

12:01:03.128 [RxSingleScheduler-1] INFO

samples.RxThreading - 30

12:01:03.128 [RxSingleScheduler-1] INFO

samples.RxThreading - 40

12:01:03.128 [RxComputationThreadPool-1] INFO

samples.RxThreading - map(50)

12:01:03.128 [RxSingleScheduler-1] INFO

samples.RxThreading - 50

12:01:04.127 [main] INFO

samples.RxThreading

===================================

Combining observables. RxJava ofers many ways to combine streams. We’ll illustrate that with

the merge and zip operations. Merging streams provides a single stream that mixes elements

from the various sources, as the following example shows:

package samples;

import io.reactivex.Flowable;

import io.reactivex.schedulers.Schedulers;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

44

//reactive programming /

import java.util.UUID;

import java.util.concurrent.TimeUnit;

public class RxMerge {

 private static final Logger logger =

 LoggerFactory.getLogger(RxMerge.class);

 public static void main(String[] args)

 throws InterruptedException {

 Flowable<String> intervals = Flowable

 .interval(100, TimeUnit.MILLISECONDS,

 Schedulers.computation())

 .limit(10)

 .map(tick -> "Tick #" + tick)

 .subscribeOn(Schedulers.computation());

 Flowable<String> strings = Flowable.just(

 "abc", "def", "ghi", "jkl")

 .subscribeOn(Schedulers.computation());

 Flowable<Object> uuids = Flowable

 .generate(emitter -> emitter.onNext(UUID.randomUUID()))

 .limit(10)

 .subscribeOn(Schedulers.computation());

 Flowable.merge(strings, intervals, uuids)

 .subscribe(obj -> logger.info("Received: {}", obj));

 Thread.sleep(3000);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

45

//reactive programming /

 }

}

Running this example gives a trace in which elements from the various sources may be inter-

leaved. Another useful option is zip(), which takes elements from various sources and assem-

bles them:

Flowable.zip(intervals, uuids, strings,

 (i, u, s) -> String.format("%s {%s} -> %s", i, u, s))

 .subscribe(obj -> logger.info("Received: {}", obj));

It produces a trace similar to this:

14:32:40.127 [RxComputationThreadPool-7] INFO

samples.RxMerge - Received: Tick #0

{67e7cde0-3f29-49cb-b569-e01474676d98} -> abc

14:32:40.224 [RxComputationThreadPool-7] INFO

samples.RxMerge - Received: Tick #1

{a0a0cc83-4bed-4793-9ee0-11baa7707610} -> def

14:32:40.324 [RxComputationThreadPool-7] INFO

samples.RxMerge - Received: Tick #2

{7b7d81b6-cc39-4ec0-a174-fbd61b1d5c71} -> ghi

14:32:40.424 [RxComputationThreadPool-7] INFO

samples.RxMerge - Received: Tick #3

{ae88eb02-52a5-4af7-b9cf-54b29b9cdb85} -> jkl

In real-world scenarios, zip() is useful for gathering data from other parties, such as services,

and then producing a result based on what was received.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

46

//reactive programming /

Implementing Reactive Systems with Reactive Programming

While reactive programming lets you compose asynchronous and event-driven applications,

don’t lose sight of the overall goal. To successfully build responsive distributed systems in

a world of cloud and containers, embracing the asynchronous execution model is essential.

Reactive programming addresses the asynchronous development model, but you still need a

task-based concurrency model and nonblocking I/O. Eclipse Vert.x provides these two missing

pieces as well as RxJava-friendly APIs.

The Vert.x execution model is based on the concept of an event loop. An event loop is a

thread consuming events from a queue. For each event, it looks for a handler interested in the

event and calls it. Handlers are methods that receive an event as a parameter. In this model,

your code can be single-threaded while handling lots of concurrent and entangled tasks.

However, this approach comes with some drawbacks. The executed handlers must never block

the event loop: if they do, the system loses its responsiveness and the number of unprocessed

events in the queue rises.

Fortunately, Vert.x comes with a large ecosystem for implementing almost anything in an

asynchronous and nonblocking way. For instance, Vert.x provides building blocks for building

modern web applications, accessing databases, and interacting with legacy systems. Let’s look

at a few examples. The Vert.x “hello world” application (code available online) is the following:

package samples;

import io.vertx.core.Vertx;

public class HttpApplication {

 public static void main(String[] args) {

 // 1 - Create a Vert.x instance

 Vertx vertx = Vertx.vertx();

 // 2 - Create the HTTP server

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jponge/oracle-javamag-vertx-rxjava/blob/master/vertx-samples/src/main/java/samples/HttpApplication.java

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

47

//reactive programming /

 vertx.createHttpServer()

 // 3 - Attach a request handler processing the requests

 .requestHandler(req -> req.response()

 .end("Hello, request handled from "

 + Thread.currentThread().getName()))

 // 4 - Start the server on the port 8080

 .listen(8080);

 }

}

For each incoming HTTP request (event), the request handler is called. Notice that the handler is

always called by the same thread: the event loop thread. Now, if you want to call another service

(using HTTP) in the request handler, you would do something like this:

package samples;

import io.vertx.core.Vertx;

import io.vertx.ext.web.client.WebClient;

public class TwitterFeedApplication {

 public static void main(String[] args) {

 Vertx vertx = Vertx.vertx();

 // 1 - Create a Web client

 WebClient client = WebClient.create(vertx);

 vertx.createHttpServer()

 .requestHandler(req -> {

 // 2 - In the request handler, retrieve a Twitter feed

 client

 .getAbs("https://twitter.com/vertx_project")

 .send(res -> {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

48

//reactive programming /

 // 3 - Write the response based on the result

 if (res.failed()) {

 req.response().end("Cannot access "

 + "the twitter feed: "

 + res.cause().getMessage());

 } else {

 req.response().end(res.result()

 .bodyAsString());

 }

 });

 })

 .listen(8080);

 }

}

This example relies on the Vert.x nonblocking I/O, so the entire code runs on the Vert.x event

loop (in a single-thread manner). This does not prevent handling concurrent requests. It’s

actually the opposite; a single thread handles all the requests. However, you can quickly see the

issue: the code becomes diicult to understand because of the nested callbacks. This is where

RxJava comes into play. The previous code can be rewritten as follows:

package samples;

import io.vertx.reactivex.core.Vertx;

import io.vertx.reactivex.core.http.HttpServer;

import io.vertx.reactivex.ext.web.client.HttpResponse;

import io.vertx.reactivex.ext.web.client.WebClient;

public class RXTwitterFeedApplication {

 public static void main(String[] args) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

49

//reactive programming /

 Vertx vertx = Vertx.vertx();

 WebClient client = WebClient.create(vertx);

 HttpServer server = vertx.createHttpServer();

 server

 // 1 - Transform the sequence of request into a stream

 .requestStream().toFlowable()

 // 2 - For each request, call the twitter API

 .flatMapCompletable(req ->

 client.getAbs("https://twitter.com/vertx_project")

 .rxSend()

 // 3 - Extract the body as string

 .map(HttpResponse::bodyAsString)

 // 4 - In case of a failure

 .onErrorReturn(t -> "Cannot access the twitter " +

 "feed: " + t.getMessage())

 // 5 - Write the response

 .doOnSuccess(res -> req.response().end(res))

 // 6 - Just transform the restul into a completable

 .toCompletable()

)

 // 7 - Never forget to subscribe to a reactive type,

 // or nothing happens

 .subscribe();

 server.listen(8080);

 }

}

By restructuring the code around the RxJava reactive types, you beneit from the RxJava

operators.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

50

//reactive programming /

Implementing a Reactive Edge Service

Let’s look at another simple yet efective example. Suppose that you have three services ofering

bids, and you want to ofer an edge service to select the best ofer at a point in time. Let these

services ofer simple HTTP/JSON endpoints. Obviously in real-world scenarios, these services

might fail temporarily, and their response times might greatly vary.

We will simulate such a system by developing the following:

■■ A bidding service, with artiicial delays and random errors
■■ An edge service to query services through HTTP

By using RxJava, we can show how to combine request streams, deal with failures, and provide

time-bound guarantees for returning the best ofer. All verticles will be deployed within the

same application as we are prototyping, but this does not result in any loss of generality. The

complete code is available in the vertx-samples subproject.

Instead of starting the application using a main method, we are going to use verticles. A

verticle is a chunk of code, generally a Java class, that is deployed and run by Vert.x. Verticles

are simple and scalable, and they use an actor-like deployment and concurrency model. They

let you organize your code into a set of loosely coupled components. By default, verticles are

executed by the event loop and observe diferent types of events (HTTP requests, TCP frames,

messages, and so on). When the application starts, it instructs Vert.x to deploy a set of verticles.

Bidding service verticle. The verticle is designed with the HTTP port being conigurable,

as follows:

public class BiddingServiceVerticle extends AbstractVerticle {

 private final Logger logger =

 LoggerFactory.getLogger(BiddingServiceVerticle.class);

 @Override

 public void start(Future<Void> verticleStartFuture) throws Exception {

 Random random = new Random();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/jponge/oracle-javamag-vertx-rxjava/tree/master/vertx-samples

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

51

//reactive programming /

 String myId = UUID.randomUUID().toString();

 int portNumber = config().getInteger("port", 3000);

 // (...)

 }

}

The config() method provides access to a verticle coniguration, and accessor methods such as

getInteger support a default value as a second argument. So here, the default HTTP port is 3000.

The service has a random UUID to identify its endpoint in responses, and it makes use of a ran-

dom number generator.

The next step is to use the Vert.x web router to accept HTTP GET requests on path /offer:

Router router = Router.router(vertx);

router.get("/offer").handler(context -> {

 String clientIdHeader = context.request()

 .getHeader("Client-Request-Id");

 String clientId =

 (clientIdHeader != null) ? clientIdHeader : "N/A";

 int myBid = 10 + random.nextInt(20);

 JsonObject payload = new JsonObject()

 .put("origin", myId)

 .put("bid", myBid);

 if (clientIdHeader != null) {

 payload.put("clientRequestId", clientId);

 }

 long artificialDelay = random.nextInt(1000);

 vertx.setTimer(artificialDelay, id -> {

 if (random.nextInt(20) == 1) {

 context.response()

 .setStatusCode(500)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

52

//reactive programming /

 .end();

 logger.error("{} injects an error (client-id={}, "

 + "artificialDelay={})",

 myId, myBid, clientId, artificialDelay);

 } else {

 context.response()

 .putHeader("Content-Type",

 "application/json")

 .end(payload.encode());

 logger.info("{} offers {} (client-id={}, " +

 "artificialDelay={})",

 myId, myBid, clientId, artificialDelay);

 }

 });

});

Note that to simulate failures, we built in a 5 percent chance of failure (in which case, the ser-

vice issues an HTTP 500 response) and the inal HTTP response is delayed by using a random

timer between 0 and 1,000 milliseconds.

Finally, the HTTP server is started as usual:

vertx.createHttpServer()

 .requestHandler(router::accept)

 .listen(portNumber, ar -> {

 if (ar.succeeded()) {

 logger.info("Bidding service listening on HTTP " +

 "port {}", portNumber);

 verticleStartFuture.complete();

 } else {

 logger.error("Bidding service failed to start",

 ar.cause());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

53

//reactive programming /

 verticleStartFuture.fail(ar.cause());

 }

 });

Edge service: selecting the best ofer. This service is implemented using the RxJava API pro-

vided by Vert.x. Here are the preamble and the start method of the verticle class:

public class BestOfferServiceVerticle extends AbstractVerticle {

 private static final JsonArray DEFAULT_TARGETS = new JsonArray()

 .add(new JsonObject()

 .put("host", "localhost")

 .put("port", 3000)

 .put("path", "/offer"))

 .add(new JsonObject()

 .put("host", "localhost")

 .put("port", 3001)

 .put("path", "/offer"))

 .add(new JsonObject()

 .put("host", "localhost")

 .put("port", 3002)

 .put("path", "/offer"));

 private final Logger logger = LoggerFactory

 .getLogger(BestOfferServiceVerticle.class);

 private List<JsonObject> targets;

 private WebClient webClient;

 @Override

 public void start(Future<Void> startFuture) throws Exception {

 webClient = WebClient.create(vertx);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

54

//reactive programming /

 targets = config().getJsonArray("targets",

 DEFAULT_TARGETS)

 .stream()

 .map(JsonObject.class::cast)

 .collect(Collectors.toList());

 vertx.createHttpServer()

 .requestHandler(this::findBestOffer)

 .rxListen(8080)

 .subscribe((server, error) -> {

 if (error != null) {

 logger.error("Could not start the best offer " +

 "service", error);

 startFuture.fail(error);

 } else {

 logger.info("The best offer service is running " +

 "on port 8080");

 startFuture.complete();

 }

 });

 }

There are several interesting points in this code:

■■ To access the RxJava API ofered by Vert.x, we import and extend the

io.vertx.reactivex.core.AbstractVerticle class.

■■ It is possible to specify the target services, with the defaults being on the local host and

ports 3000, 3001, and 3002. Such coniguration can be passed as a JSON array containing JSON

objects with host, port, and path keys.

■■ Variants of the Vert.x APIs that return RxJava objects are preixed with “rx”: here rxListen

returns a Single<HttpServer>. The server is not actually started until we subscribe.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

55

//reactive programming /

We can now focus on the implementation of the findBestOffer method. It irst issues HTTP

requests to each service, obtaining a list of Single<JsonObject> responses, and then it reduces

them to the single, best response and eventually ends the HTTP response:

private final AtomicLong requestIds = new AtomicLong();

private static final JsonObject EMPTY_RESPONSE = new JsonObject()

 .put("empty", true)

 .put("bid", Integer.MAX_VALUE);

private void findBestOffer(HttpServerRequest request) {

 String requestId = String.valueOf(requestIds.getAndIncrement());

 List<Single<JsonObject>> responses = targets.stream()

 .map(t -> webClient

 .get(t.getInteger("port"),

 t.getString("host"),

 t.getString("path"))

 .putHeader("Client-Request-Id",

 String.valueOf(requestId))

 .as(BodyCodec.jsonObject())

 .rxSend()

 .retry(1)

 .timeout(500, TimeUnit.MILLISECONDS,

 RxHelper.scheduler(vertx))

 .map(HttpResponse::body)

 .map(body -> {

 logger.info("#{} received offer {}", requestId,

 body.encodePrettily());

 return body;

 })

 .onErrorReturnItem(EMPTY_RESPONSE))

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

56

//reactive programming /

 .collect(Collectors.toList());

 Single.merge(responses)

 .reduce((acc, next) -> {

 if (next.containsKey("bid") && isHigher(acc, next)) {

 return next;

 }

 return acc;

 })

 .flatMapSingle(best -> {

 if (!best.containsKey("empty")) {

 return Single.just(best);

 } else {

 return Single.error(new Exception("No offer " +

 "could be found for requestId=" + requestId));

 }

 })

 .subscribe(best -> {

 logger.info("#{} best offer: {}", requestId,

 best.encodePrettily());

 request.response()

 .putHeader("Content-Type",

 "application/json")

 .end(best.encode());

 }, error -> {

 logger.error("#{} ends in error", requestId, error);

 request.response()

 .setStatusCode(502)

 .end();

 });

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

57

//reactive programming /

It is interesting to note the following for each HTTP request:

■■ The response is converted to a JsonObject using the as() method.

■■ A retry is attempted if the service issued an error.
■■ The processing times out after 500 milliseconds before returning an empty response, which is

how we avoid waiting for all responses and errors to arrive.

Note that all RxJava operations that expect a scheduler can use RxHelper::scheduler to ensure

that all events remain processed on Vert.x event loops.

The whole processing is just a matter of composing functional idioms such as map, flatMap,

and reduce and handling errors with a default value. If no service can deliver a bid within 500

milliseconds, no ofer is being made, resulting in an HTTP 502 error. Otherwise, the best ofer

is selected among the responses received.

Deploying verticles and interacting with the services. The main verticle code is as follows:

public class MainVerticle extends AbstractVerticle {

 @Override

 public void start() {

 vertx.deployVerticle(new BiddingServiceVerticle());

 vertx.deployVerticle(new BiddingServiceVerticle(),

 new DeploymentOptions().setConfig(

 new JsonObject().put("port", 3001)));

 vertx.deployVerticle(new BiddingServiceVerticle(),

 new DeploymentOptions().setConfig(

 new JsonObject().put("port", 3002)));

 vertx.deployVerticle("samples.BestOfferServiceVerticle",

 new DeploymentOptions().setInstances(2));

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

58

//reactive programming /

We deploy the bidding service three times on diferent ports to simulate three services, pass-

ing the HTTP port those services should listen on in the JSON coniguration. We also deploy

the edge service verticle with two instances to process the incoming traic on two CPU cores

rather than one. The two instances will listen on the same HTTP port, but note that there will

be no conlict because Vert.x distributes the traic in a round-robin fashion.

We can now interact with the HTTP services, for instance, by using the HTTPie command-

line tool. Let’s talk to the service on port 3000:

$ http GET localhost:3000/offer 'Client-Request-Id:1234' --verbose

GET /offer HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Client-Request-Id: 1234

Connection: keep-alive

Host: localhost:3000

User-Agent: HTTPie/0.9.9

HTTP/1.1 200 OK

Content-Length: 83

Content-Type: application/json

{

 "bid": 21,

 "clientRequestId": "1234",

 "origin": "fe299565-34be-4a7b-ac09-d88fcc1e42e2"

}

The logs reveal both artiicial delays and errors:

[INFO] 16:08:03.443 [vert.x-eventloop-thread-1] ERROR

samples.BiddingServiceVerticle -

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

59

//reactive programming /

6358300b-3f2d-40be-93db-789f0f1cde17 injects an error (

client-id=1234, artificialDelay=N/A)

[INFO] 16:11:10.644 [vert.x-eventloop-thread-1]

INFO samples.BiddingServiceVerticle -

6358300b-3f2d-40be-93db-789f0f1cde17 offers 10 (

client-id=1234, artificialDelay=934)

Similarly, you can play with the edge service, observe responses, and check the logs to see how

a response is being assembled. Sometimes you will get an error:

$ http GET localhost:8080 'Client-Request-Id:1234'

HTTP/1.1 502 Bad Gateway

Content-Length: 0

This is because all responses took longer than 500 milliseconds to arrive and some services

injected an error:

[INFO] 16:12:51.869 [vert.x-eventloop-thread-2]

INFO samples.BiddingServiceVerticle -

d803c4dd-1e9e-4f76-9029-770366e82615 offers 16 (

client-id=0, artificialDelay=656)

[INFO] 16:12:51.935 [vert.x-eventloop-thread-1]

INFO samples.BiddingServiceVerticle -

6358300b-3f2d-40be-93db-789f0f1cde17 offers 17 (

client-id=0, artificialDelay=724)

[INFO] 16:12:52.006 [vert.x-eventloop-thread-3]

INFO samples.BiddingServiceVerticle -

966e8334-4543-463e-8348-c6ead441c7da offers 14 (

client-id=0, artificialDelay=792)

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

60

//reactive programming /

Sometimes you will observe that only one or two responses have been taken into account.

The key point in this sample is that the combination of Vert.x and RxJava ofers a declara-

tive and functional model for describing how to perform and process a lexible number of net-

work requests while remaining purely driven by asynchronous events.

Conclusion

In this article, you have seen how Eclipse Vert.x combines reactive programming and the asyn-

chronous execution model to build reactive systems. Reactive programming lets you compose

asynchronous and event-driven applications by manipulating and combining data streams.

Modern reactive programming libraries such as RxJava implement reactive streams to handle

back-pressure. However, a reactive approach is not limited to reactive programming. Don’t

lose sight that you want to build better systems that are responsive, robust, and interactive. By

using the execution model and nonblocking I/O capabilities promoted by Vert.x, you are on the

path to becoming truly reactive.

This article just scratched the surface. Vert.x gives you signiicant power and agility to

create compelling, scalable, twenty-irst-century applications the way you want to. Whether

it’s simple network utilities, sophisticated modern web applications, HTTP/REST microservices,

high-volume event processing, or a full-blown back-end message-bus application, Vert.x is a

great it. </article>

Clement Escoier (@clementplop) is a principal software engineer at Red Hat, where he is working as a

Vert.x core developer. He has been involved in projects and products touching many domains and technologies

such as OSGi, mobile app development, continuous delivery, and DevOps. Escoier is an active contributor to

many open source projects, including Apache Felix, iPOJO, Wisdom Framework, and Eclipse Vert.x.

Julien Ponge (@jponge) is an associate professor at INSA Lyon and a researcher at the CITI-INRIA laboratory.

He is a longtime open source developer, having created IzPack and the Golo programming language, and is now

a member of the Eclipse Vert.x team. Ponge is currently on leave from INSA and working as a delegated con-

sultant to Red Hat on the Vert.x project.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

61

//reactive programming /

R eactive programming is an approach to writing software that embraces asynchronous I/O.

Asynchronous I/O is a small idea that portends big changes for software. The idea is simple:

alleviate ineicient resource utilization by using resources that would otherwise sit idle as they

waited for I/O activity. Asynchronous I/O inverts the normal design of I/O processing: clients are

notiied of new data instead of asking for it. This approach frees the client to do other things

while waiting for new notiications.

There is, of course, always the risk that too many notiications will overwhelm a client; so, a

client must be able to push back, rejecting work it can’t handle. This is a fundamental aspect of

low control in distributed systems. In reactive programming, the ability of the client to signal

how much work it can manage is called back-pressure.

Many projects, such as Akka Streams, Vert.x, and RxJava, support reactive programming.

[Vert.x and RxJava are examined in detail in the accompanying article, “Going Reactive with

Eclipse Vert.x and RxJava,” on page 32. —Ed.] The Spring team has a project called Reactor,

which provides reactive capabilities for the Spring Framework. There’s common ground across

these diferent approaches, which has been summarized in the Reactive Streams initiative—an

informal standard of sorts.

The Fundamental Data Types

The Reactive Streams initiative deines four data types. Publisher is a producer of values that

might eventually arrive. A Publisher produces values of type T, as shown in Listing 1.

Reactive Spring
Proceeding from fundamentals, use the Spring Framework to quickly build

a reactive application.

JOSH LONG

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://www.reactive-streams.org/

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

62

//reactive programming /

Listing 1: The Reactive Streams Publisher<T>

package org.reactivestreams;

public interface Publisher<T> {

 void subscribe(Subscriber<? Super T> s);

}

A Subscriber subscribes to a Publisher, receiving notiications on any new values of type T, as

shown in Listing 2.

Listing 2: The Reactive Streams Subscriber

package org.reactivestreams;

 public interface Subscriber<T> {

 public void onSubscribe(Subscription s);

 public void onNext(T t);

 public void onError(Throwable t);

 public void onComplete();

}

When a Subscriber subscribes to a Publisher, it results in a Subscription, as shown in Listing 3.

Listing 3: The Reactive Streams Subscription

package org.reactivestreams;

public interface Subscription {

 public void request(long n);

 public void cancel();

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

63

//reactive programming /

A Publisher that is also a Subscriber is called a Processor, which is shown in Listing 4.

Listing 4: The Reactive Streams Processor

package org.reactivestreams;

public interface Processor<T, R> extends Subscriber<T>, Publisher<R> {

}

The speciication is not meant to be a prescription for the implementations; instead, it deines

types for interoperability. The Reactive Streams types eventually found their way into Java 9 as

one-to-one semantically equivalent interfaces in the java.util.concurrent.Flow class.

Reactor

The Reactive Streams types are not enough; you’ll need higher-order implementations to sup-

port operators such as iltering and transformation. Pivotal’s Reactor project is a good choice

here; it builds on top of the Reactive Streams speciication. It provides two specializations of

Publisher<T>. The irst, Flux, is a Publisher that produces zero or more values. It’s unbounded.

The second, Mono<T>, is a Publisher that produces one or zero values. They’re both publishers and

you can treat them that way, but they go much further than the Reactive Streams speciication.

They both provide ways to process a stream of values. Reactor types compose nicely: the output

of one thing can be the input to another.

Reactive Spring

As useful as project Reactor is, it’s only a foundation. Applications need to talk to data sources.

They need to produce and consume HTTP, Server-Sent Events (SSE), or WebSocket endpoints.

They support authentication and authorization. Spring Framework 5.0 provides these things. It

was released in September 2017 and builds on Reactor and the Reactive Streams speciication. It

includes a new reactive runtime and component model called Spring WebFlux. Spring WebFlux

does not depend on or require the Servlet APIs to work. It ships with adapters that allow it to

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

64

//reactive programming /

work on top of a servlet engine, if need be, but that is not required. It also provides a Netty-

based web server. Spring Framework 5, which works with a baseline of Java 8 and Java EE 7, is

the foundation for changes in much of the Spring ecosystem. Let’s look at an example.

Example Application

Let’s build a simple Spring Boot 2.0 application that represents a service to manage books. You

could call the project Library or something like that. Go to the Spring Initializr. Make sure that

some version of Spring Boot 2.0 (or later) is selected in the version drop-down menu. You’re

writing a service to manage access to books in the library, so give this project the artifact ID

library-service. Select the elements you’ll need: Reactive Web, Actuator, Reactive MongoDB,

Reactive Security, and Lombok.

I often use the Kotlin language, even if most of the project I am building is in Java. I keep

Java artifacts collocated in a Kotlin project. Click Generate and it’ll download an archive. Unzip

it and open it in your favorite IDE that supports Java 8 (or later), Kotlin (optionally), and Maven.

While you could have chosen Gradle in the Spring Initializr, I chose Maven for the purposes

of this article. The stock standard Spring Boot application has an entry class that looks like

Listing 5.

Listing 5: The empty husk of a new Spring Boot project

package com.example.libraryservice;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication public class LibraryServiceApplication {

 public static void main(String[] args) {

 System.setProperty("spring.profiles.active",

 "security,authorization,frpjava");

 SpringApplication.run(LibraryServiceApplication.class, args);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
http://start.spring.io/

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

65

//reactive programming /

 }

}

Data Access with Reactive Spring Data Modules

The most recent release of Spring Data debuts support for reactive data access when that is sup-

ported in the underlying datastores (such as MongoDB, Cassandra, Redis, and Couchbase). The

release also introduces new reactive repository and template implementations. Because you

have the reactive MongoDB driver and Spring Data module on the classpath, let’s use them to

manage some data. Create a new entity called Book, as shown in Listing 6.

Listing 6: A MongoDB @Document entity, Book

package com.example.libraryservice;

import lombok.AllArgsConstructor;

import lombok.Data;

import lombok.NoArgsConstructor;

import org.springframework.data.annotation.Id;

import org.springframework.data.mongodb.core.mapping.Document;

@Document

@Data

@AllArgsConstructor

@NoArgsConstructor

public class Book {

 @Id

 private String id;

 private String title;

 private String author;

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

66

//reactive programming /

Next, create a Spring Data repository to support the data management lifecycle of the entity.

This should look very familiar to anyone who has ever used Spring Data, except that the reposi-

tory supports reactive interactions: methods return Publisher types, and input can be given as

Publisher instances. See Listing 7.

Listing 7: A reactive Spring Data MongoDB repository

package com.example.libraryservice;

import org.springframework.data.mongodb.repository.ReactiveMongoRepository;

import reactor.core.publisher.Flux;

public interface BookRepository extends ReactiveMongoRepository {

 Flux findByAuthor(String author);

}

Install Some Sample Data

With that, you now have enough to install some sample data (just for your demo). Spring

Boot invokes the #run(ApplicationArguments) method when the application has started,

passing wrappers for the arguments (String [] args) into the application. Let’s create an

ApplicationRunner that deletes all the data in the data source, then emits a few book titles, then

maps them to Book entities, and then persists those books. Finally, it queries all the records in

the data source and then prints out everything. Listing 8 shows all this.

Listing 8: An ApplicationRunner to write data

package com.example.libraryservice;

import lombok.extern.slf4j.Slf4j;

import org.springframework.boot.ApplicationArguments;

import org.springframework.boot.ApplicationRunner;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

67

//reactive programming /

import org.springframework.stereotype.Component;

import reactor.core.publisher.Flux;

@Slf4j

@Component

class SampleBookInitializer implements ApplicationRunner {

 private final BookRepository bookRepository;

 SampleBookInitializer(BookRepository bookRepository) {

 this.bookRepository = bookRepository;

 }

 @Override

 public void run(ApplicationArguments args) throws Exception {

 this.bookRepository

 .deleteAll()

 .thenMany(

 Flux.just(

 "Cloud Native Java|jlong",

 "Spring Security 3.1|rwinch",

 "Spring in Action|cwalls"))

 .map(t -> t.split("\\|"))

 .map(tuple -> new Book(null, tuple[0], tuple[1]))

 .flatMap(this.bookRepository::save)

 .thenMany(this.bookRepository.findAll())

 .subscribe(book -> log.info(book.toString()));

 }

}

The example looks at the titles of various books and one of the (possibly numerous) books’

authors, and then it writes them to the database. First the strings are split by the | delimiter.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

68

//reactive programming /

Then the title and book author are used to create a Book. Then the records are saved to the data

source, MongoDB. The result of the save operation is a Mono<Book>. Something needs to sub-

scribe to each of those resulting Publisher<T> instances, so I use the flatMap operator. Then, I

turn my focus to the results of inding all records and then to logging them for inspection.

This code deines a pipeline; each operator deines a stage in a pipeline. The pipeline is not

eager; that is, it won’t be executed until it is activated. You activate the pipeline by subscribing

to it (the last step in the code in Listing 8). Publisher deines only one type of subscription, but

Reactor provides hooks to process each emitted value, as well as any exceptions thrown, among

other things.

Were you to put a breakpoint in any of the lambdas in Listing 8 and then inspect

Thread.currentThread().getName(), you’d see that the thread on which processing is run-

ning is diferent than the main thread (which is named main). Reactor defers to a Scheduler

implementation for its processing. You can specify the default global Scheduler you’d like to

use by calling Schedulers.setFactory(Factory). You can specify on which thread a particu-

lar Publisher should run when it subscribes by specifying Mono::subscribeOn(Scheduler) or

Flux::subscribeOn(Scheduler).

Conclusion

You have now used Spring Boot and Spring Initializr to quickly create and run a reactive data

application that hews closely to the requirements of reactive development. In the second (and

inal) part of this article, I’ll use Spring Framework 5.0 to stand up a REST API and to implement

secure access to this data. Meanwhile, if you want to look at the complete application, the source

code is all online. </article>

Josh Long (@starbuxman) is a Java Champion and a Spring developer advocate at Pivotal. He is the author of

several books on Spring programming, and he speaks frequently at developer conferences.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/joshlong/reactive-spring-article

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

69

//beyond CRUD /

Most of today’s enterprise applications are based on a CRUD data model that is simple and

straightforward to implement. Event sourcing, event-driven architectures, and Command

Query Responsibility Segregation (CQRS) ofer another way to model applications that enables

interesting solutions and use cases, especially with the rising demands of scalability. Before

getting into CQRS, I’ll quickly describe some of the limitations of the CRUD model.

Shortcomings of CRUD-Based Applications

A CRUD-based application always contains the current state of the system. The domain entities

are stored in the database or in an in-memory representation with their properties as they are

at any given moment. That aspect comes in handy when users read the current state, but it falls

short in other aspects.

For example, a model that is solely CRUD-based has no information about the history or

the context—why the system, including all domain objects, is in its current state and how it got

there. Once an update is performed, the objects are then in a new state and their old state is

forgotten. This can make it tricky to reproduce and debug situations in production. It’s harder to

comprehend the current state and ind potential bugs if the whole history is not available.

Another challenge of CRUD-based models is that due to storing only the current state, all

transactions and interactions need to modify the system in a consistent way. This sounds nor-

mal to enterprise developers but can become quite complex when you are dealing with compet-

ing transactions—for example, when users want to update their contact information and at the

Command Query Responsibility
Segregation with Java
Combining event sourcing and event-driven architectures to build scalable,

eventually consistent systems

SEBASTIAN DASCHNER

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

70

//beyond CRUD /

same time some other use case updates their

account balance. If this information afects the

same database entries, the two activities lead

to a locking situation. Usually, this optimis-

tic locking results in one transaction winning

over the other. However, strictly speaking,

there should be no need to mutually exclude

either transaction.

A similar problem occurs when a use case updates business objects whose new states

require veriication to keep the system in a consistent state. Verifying and maintaining these

consistent states can become both redundant and complex.

Because CRUD-based applications need to store the status quo and keep a consistent state

within their data model, they cannot scale horizontally. To maintain consistency, such applica-

tions need to lock the data (as in good old atomicity, consistency, isolation, and durability [ACID]

transactions) until the update has taken place. If several distributed systems are involved, the

synchronization will become a bottleneck.

Event Sourcing

In contrast to a CRUD data model, event-sourced systems store all modiications that happen to

a system as atomic entities. The application does not necessarily contain the current state, but

it can be calculated by applying all events that have happened in the past. These events are the

single source of truth in the system.

The most prominent example for this model is bank accounts. You can calculate your cur-

rent balance by starting at zero and adding or subtracting the amounts of all transactions

accordingly. The example in Figure 1 shows a simple set of customer-related events that can be

used to arrive at a customer representation.

The events are atomic and immutable, because they happened in the past and cannot be

undone. This implies that, for example, a deletion action also changes the current state by just

adding a CustomerDeleted event to the log—no entry is actually deleted.

Because the real world is all about
distributed collaboration—often in an
asynchronous way—it makes sense to model
applications in an event-driven way.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

71

//beyond CRUD /

While the current state could be calculated on demand using all events that have happened

in the past, enterprise systems use so-called snapshots that represent the state as of a certain

moment in time. Events that arose after that moment are then applied to the snapshot in order

to form a new state, which again can be persisted. This is, however, an optimization technique

to deal with a growing number of events—the atomic events remain the golden source of truth.

One of the beneits of this architecture is that the full history of what has happened

enables developers to reproduce complex use-case scenarios and debug the system with ease.

Another advantage of event-sourced systems is the possibility of calculating statistics and

implementing future use cases later. Because all atomic information that ever was applied to

the system is available, you can use this information and simply redeploy the application with

updated behavior and recalculate the status from the events. That makes it possible to imple-

ment future use cases on events that happened in the past—as if that new functionality was

always there. For example, answering the question, “How many users signed up on a Tuesday?”

is possible using the information contained in the events even if this functionality wasn’t

considered previously.

Figure 1. Events that determine the current state of a customer entry

John_Doe_123 : Customer

CustomerCreated

CustomerAddressChanged

CustomerAccountVerified

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

72

//beyond CRUD /

Event sourcing alone doesn’t imply that the application has to be implemented using an

event-driven or CQRS approach. However, in order to apply CQRS, you need to model applica-

tions with event sourcing.

Event-Driven Applications

In contrast to the beneits of an event-sourced system, the motivations behind event-driven

applications difer. If you want to model distributed systems—such as microservices—that aim

to maintain a consistent state throughout several systems, you need to take transactions into

account. Because distributed transactions don’t scale well, you split up a transaction into several

transactions that still maintain consistency—at least in an eventually consistent way.

An event-driven architecture (see Figure 2) realizes use cases that involve multiple systems

by collaborating via commands and events. For ordering a cup of cofee at a café, for example,

you would irst attempt to place an order, which results in an OrderPlaced event—or an error.

Figure 2. Example event-driven architecture

Order_123 : Order

Co�ee order system Bean storage system

validateOrder()

OrderAccepted

placeOrder()

OrderPlaced

completeOrder()

OrderCompleted

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

73

//beyond CRUD /

This OrderPlaced event then causes the cofee bean storage to check whether there are beans

available and to publish either an OrderAccepted event or an OrderFailedInsufficientBeans

event. The current state of the order is calculated by applying all events related to that order as

in an event-sourced system.

This way of modeling causes the process to be eventually consistent, and because the appli-

cation ensures that all events are published in a reliable way, the inal outcome of the use cases

will be consistent.

If you compare this way of modeling to the real world, you can see that these methods of

collaboration are common. When you order a cup of cofee, the waiter accepts your order—even

though it’s possible that for some reason the

cofee will never make it to you. In that case,

the waiter will come back later and apologize

for not being able to deliver the cofee and

will ofer a compensating transaction—even

though the order was accepted in the irst

place. Eventually, you will end up with your

cofee, another drink, or your money back.

Because the real world is all about distributed collaboration—often in an asynchronous

way—it makes sense to model applications in an event-driven way.

Enter CQRS

Now that I’ve summarized implementing event-driven and event-sourced applications, I will

introduce the CQRS principle, which prescribes separating the responsibilities of reads and

writes. CQRS causes methods to either modify the state of the system without returning any

value or to return values without any side efect. The commands (that is, the writes) are not

supposed to return values; they either return successfully or throw an error. The queries (that is,

the reads) only return data (see Figure 3).

This principle is simple in theory but has important implications. Once you split up a sys-

tem following this approach, the applications collaborate only by events that are published to

One of the benefits of separating the
responsibilities of reads and writes in
the CQRS model is the fact that the query and
command sides can scale independently.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

74

//beyond CRUD /

an event store. The command and query components maintain their own domain object rep-

resentations by consuming the events from the hub and updating the state of their internal

model. The storage representations of each side can difer and be optimized according to their

best it.

When an update command, placeOrder(Order), reaches the command side, the service per-

forms the action using the domain object representations in its internal storage and publishes

events (OrderPlaced). When the client reads at the query side, this service returns the current

state from its internal storage. The services are coupled only by the event store and can operate

and be deployed independently from each other.

The events that are published from the event store are consumed by all subscribed consum-

Figure 3. Example of a CQRS implementation

EventStore

OrderPlaced

CommandService

void placeOrder() Co
eeOrder getOrder()

QueryService DBDB

OrderPlaced

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

75

//beyond CRUD /

ers to update their internal model—but only one subscriber, EventHandler, is supposed to trigger

further commands from these events. Publishing the events has to happen in a reliable way to

keep the system in a consistent state in the long run.

Benefits of CQRS

One of the beneits of separating the responsibilities of reads and writes in the CQRS model is

the fact that the query and command sides can scale independently. In typical enterprise appli-

cations, the read operations outnumber the write operations. Because being eventually consis-

tent on the read side is, in most cases, not a big problem, returning replicated data has a positive

impact on the overall performance. Using CQRS enables you to deploy, for example, a greater

number of query service instances to scale out just the read side.

The domain model representations of each of the services solve the problem of the rising

numbers of events in an event-sourced system. Because more and more events are stored in the

system over time, the overall performance of operations would decrease if the application state

were solely calculated on demand by applying all events each time. Updating the representation

continuously and using these models in the commands and queries maintains a constant level

of performance. This corresponds to the concept of snapshots.

Another beneit of this separation is the given failover capacity—at least for the read side.

Because all instances maintain an eventually consistent representation of the system’s state,

this cached state is still available if the event store goes down. Even though no new events can

be written, the clients can still access the last state.

Applications that implement CQRS also have the capability to implement further use cases

that operate on events from the past, because they implement event sourcing as well.

Now, I will show an actual CQRS implementation in a Java EE application.

Example CQRS Application

As an example, I’m using a scalable cofee shop that consists of three services, responsible for

order management (orders), bean storage (beans), and cofee brewing (barista). Each service is

free to choose its internal domain object representation, and the collaboration is done using

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

76

//beyond CRUD /

Apache Kafka as the event hub. Once events are published to Kafka, the services handle the

events accordingly and update their representation.

The business use cases for ordering a cup of cofee are shown in Figure 4.

When a client creates an order, the command service publishes an event (OrderPlaced) and

returns the request successfully—even though the system can’t tell yet whether the order will

be inished successfully. The client can request the status of the order from the query service

Figure 4. Use cases for ordering a cup of cofee

OrderDelivered

deliverOrder()

finishOrder()

OrderFinished

OrderStarted

startOrder()

OrderAccepted

acceptOrder()

OrderPlaced

orderCo�ee()

Co�ee order system Bean storage system Barista system

validateBeans()

OrderBeansValidated

fetchBeans()

makeCo�ee()

Co�eeBrewStarted()

Co�eeBrewFinished

Co�eeDelivered

BeansFetched

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

77

//beyond CRUD /

anytime, with the state being updated on incoming events.

Application Architecture

The Java EE application is organized with the Entity Control Boundary (ECB) pattern. The appli-

cation boundary contains the external REST interface, a *CommandService and *QueryService, and

the event handling functionality that will call subsequent commands. The control packages

contain the storage representations that contain the current domain object representations,

as well as functionality to access Kafka. The entity packages consist of the event and domain

object deinitions.

The command service contains the business methods and publishes events at the event

hub. The query service accesses the storage only to return data.

The following code shows examples for the order command service, which processes the

commands by publishing the events to the event hub. This service is the use-case entry point

from both the application boundary and the event handler.

public class OrderCommandService {

 @Inject

 EventProducer eventProducer;

 @Inject

 CoffeeOrders coffeeOrders;

 public void placeOrder(OrderInfo orderInfo) {

 eventProducer.publish(new OrderPlaced(orderInfo));

 }

 void acceptOrder(UUID orderId) {

 OrderInfo orderInfo = coffeeOrders.get(orderId)

 .getOrderInfo();

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

78

//beyond CRUD /

 eventProducer.publish(new OrderAccepted(orderInfo));

 }

 void cancelOrder(UUID orderId, String reason) {

 eventProducer.publish(

 new OrderCancelled(orderId, reason));

 }

 void startOrder(UUID orderId) {

 eventProducer.publish(new OrderStarted(orderId));

 }

 void finishOrder(UUID orderId) {

 eventProducer.publish(new OrderFinished(orderId));

 }

 void deliverOrder(UUID orderId) {

 eventProducer.publish(new OrderDelivered(orderId));

 }

}

The order query service, shown in the following code, is used to retrieve the cofee order repre-

sentations. It uses the cofee order store, which keeps track of the orders.

public class OrderQueryService {

 @Inject

 CoffeeOrders coffeeOrders;

 public CoffeeOrder getOrder(UUID orderId) {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

79

//beyond CRUD /

 return coffeeOrders.get(orderId);

 }

}

Incoming events are delivered as Contexts and Dependency Injection (CDI) events within the

application. The store itself observes these CDI events and updates and stores the domain object

representations. For simplicity, in the following code, I’m using solely in-memory storage with

the Kafka events being redelivered and reapplied at application startup. In a production envi-

ronment, this functionality would likely be integrated with a persistent database that stores the

last calculated state.

@Singleton

@Startup

@ConcurrencyManagement(ConcurrencyManagementType.BEAN)

public class CoffeeOrders {

 private final Map<UUID, CoffeeOrder> coffeeOrders =

 new ConcurrentHashMap<>();

 public CoffeeOrder get(UUID orderId) {

 return coffeeOrders.get(orderId);

 }

 public void apply(@Observes OrderPlaced event) {

 coffeeOrders.putIfAbsent(event.getOrderInfo()

 .getOrderId(), new CoffeeOrder());

 applyFor(event.getOrderInfo().getOrderId(),

 o -> o.place(event.getOrderInfo()));

 }

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

80

//beyond CRUD /

 public void apply(@Observes OrderCancelled event) {

 applyFor(event.getOrderId(), CoffeeOrder::cancel);

 }

 public void apply(@Observes OrderAccepted event) {

 applyFor(event.getOrderInfo().getOrderId(),

 CoffeeOrder::accept);

 }

 public void apply(@Observes OrderStarted event) {

 applyFor(event.getOrderId(), CoffeeOrder::start);

 }

 public void apply(@Observes OrderFinished event) {

 applyFor(event.getOrderId(), CoffeeOrder::finish);

 }

 public void apply(@Observes OrderDelivered event) {

 applyFor(event.getOrderId(), CoffeeOrder::deliver);

 }

 private void applyFor(UUID orderId,

 Consumer<CoffeeOrder> consumer) {

 CoffeeOrder coffeeOrder = coffeeOrders.get(orderId);

 if (coffeeOrder != null)

 consumer.accept(coffeeOrder);

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

81

//beyond CRUD /

For simplicity, both the query and command services are using the same CoffeeOrders instance.

However, this could be split into several components or systems and further optimized for

each side accordingly. For my purpose—to show an example implementation—this model

is suicient.

The connection for incoming events that trigger subsequent commands is done in the event

handler. This handler calls the command service for further processing of orders. It both con-

sumes Kafka messages and ires the corresponding CDI events.

@Singleton

@Startup

public class OrderEventHandler {

 private EventConsumer eventConsumer;

 @Resource

 ManagedExecutorService mes;

 @Inject

 Properties kafkaProperties;

 @Inject

 Event<CoffeeEvent> events;

 @Inject

 OrderCommandService orderService;

 @Inject

 Logger logger;

 public void handle(@Observes OrderBeansValidated event) {

 orderService.acceptOrder(event.getOrderId());

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

82

//beyond CRUD /

 }

 public void handle(@Observes

 OrderFailedBeansNotAvailable event) {

 orderService.cancelOrder(event.getOrderId(),

 "No beans of the origin were available");

 }

 public void handle(@Observes CoffeeBrewStarted event) {

 orderService.startOrder(event.getOrderInfo().getOrderId());

 }

 public void handle(@Observes CoffeeBrewFinished event) {

 orderService.finishOrder(event.getOrderId());

 }

 public void handle(@Observes CoffeeDelivered event) {

 orderService.deliverOrder(event.getOrderId());

 }

 @PostConstruct

 private void initConsumer() {

 kafkaProperties.put("group.id", "order-handler");

 eventConsumer = new EventConsumer(kafkaProperties, ev -> {

 logger.info("firing = " + ev);

 events.fire(ev);

 }, "barista", "beans");

 mes.execute(eventConsumer);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

83

//beyond CRUD /

 }

 @PreDestroy

 public void closeConsumer() {

 eventConsumer.stop();

 }

}

Integrating Apache Kafka

Apache Kafka serves as a reliable, persistent, and scalable event hub that delivers events to the

services involved. I make use of event topics that are consumed in so-called consumer groups.

In this case, I conigure Kafka to deliver the events reliably once in every consumer group. By

coniguring the same group for all event handlers, I ensure that only one instance processes

an event.

The event producer, shown in the following code, publishes the events to Kafka:

@ApplicationScoped

public class EventProducer {

 private Producer<String, CoffeeEvent> producer;

 @Inject

 Properties kafkaProperties;

 @Inject

 Logger logger;

 @PostConstruct

 private void init() {

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

84

//beyond CRUD /

 kafkaProperties.put("transactional.id",

 UUID.randomUUID().toString());

 producer = new KafkaProducer<>(kafkaProperties);

 producer.initTransactions();

 }

 public void publish(CoffeeEvent event) {

 ProducerRecord<String, CoffeeEvent> record =

 new ProducerRecord<>("order", event);

 try {

 producer.beginTransaction();

 logger.info("publishing = " + record);

 producer.send(record);

 producer.commitTransaction();

 } catch (ProducerFencedException e) {

 producer.close();

 } catch (KafkaException e) {

 producer.abortTransaction();

 }

 }

 @PreDestroy

 public void close() {

 producer.close();

 }

}

The following code uses transactional producers that were introduced in Kafka version 0.11.

They ensure that an event has been sent reliably before the client call returns. The event con-

sumer ininitely consumes new Kafka events and passes them to a functional Consumer.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

85

//beyond CRUD /

public class EventConsumer implements Runnable {

 private KafkaConsumer<String, CoffeeEvent> consumer;

 private final Consumer<CoffeeEvent> eventConsumer;

 private final AtomicBoolean closed = new AtomicBoolean();

 public EventConsumer(Properties kafkaProperties,

 Consumer<CoffeeEvent> eventConsumer,

 String... topics) {

 this.eventConsumer = eventConsumer;

 consumer = new KafkaConsumer<>(kafkaProperties);

 consumer.subscribe(asList(topics));

 }

 @Override

 public void run() {

 try {

 while (!closed.get()) {

 consume();

 }

 } catch (WakeupException e) {

 // will wake up for closing

 } finally {

 consumer.close();

 }

 }

 private void consume() {

 ConsumerRecords<String, CoffeeEvent> records =

 consumer.poll(Long.MAX_VALUE);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

86

//beyond CRUD /

 for (ConsumerRecord<String, CoffeeEvent> record : records) {

 eventConsumer.accept(record.value());

 }

 consumer.commitSync();

 }

 public void stop() {

 closed.set(true);

 consumer.wakeup();

 }

}

After an event has been processed, I commit to the consumption by calling commitSync. This

event consumer is started from both the event handler and the updating consumer. Both are

then responsible for iring the CDI events. See the OrderEventHandler deinition shown earlier

and the following OrderUpdateConsumer:

@Startup

@Singleton

public class OrderUpdateConsumer {

 private EventConsumer eventConsumer;

 @Resource

 ManagedExecutorService mes;

 @Inject

 Properties kafkaProperties;

 @Inject

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

87

//beyond CRUD /

 Event<CoffeeEvent> events;

 @Inject

 Logger logger;

 @PostConstruct

 private void init() {

 kafkaProperties.put("group.id", "order-consumer-" +

 UUID.randomUUID());

 eventConsumer = new EventConsumer(kafkaProperties, ev -> {

 logger.info("firing = " + ev);

 events.fire(ev);

 }, "order");

 mes.execute(eventConsumer);

 }

 @PreDestroy

 public void close() {

 eventConsumer.stop();

 }

}

To ensure that the consumers are managed correctly, I use Java EE’s managed executor service

to run the consumers in threads managed by the application server. For the updating consum-

ers, unique group IDs are generated to ensure that every service gets all events.

When these services start, they connect to their corresponding Kafka topics and ask for all

the undelivered events in their consumer group. To update the domain object representations to

the latest state, the updating consumer group that has the matching ID applies the events—for

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

88

//beyond CRUD /

example, in the CoffeeOrders—that occurred since the very beginning. As I mentioned before,

I’m using only in-memory storage without persistent snapshots. For the full example applica-

tion, see the scalable-cofee-shop project on GitHub.

Conclusion

CQRS provides a useful alternative to the traditional CRUD-based way of building enterprise

applications by combining the beneits of event sourcing and event-driven architectures to

build scalable, eventually consistent systems.

Of course, this approach is no silver bullet. If the situation does not require the scalabil-

ity of event-driven architectures, it’s advisable to go with monolithic, consistent applications

instead. CQRS introduces some overhead, which certainly is avoidable in most enterprise appli-

cations. An application that solely requires the beneits of event sourcing can be based on this

approach while still using a relational database and consistent use cases. </article>

Sebastian Daschner (@DaschnerS) is a Java Champion who works as a consultant and trainer. He participates

in the Java Community Process (JCP), serving in the JSR 370 and JSR 374 Expert Groups. Daschner is also a

heavy user of Linux and container technologies such as Docker. When not working with Java, he loves to travel.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://github.com/sdaschner/scalable-coffee-shop

Push a Button
Move Your Java Apps
to the Oracle Cloud

…or Back to Your Data Center

Same Java Runtime

Same Dev Tools

Same Standards

Same Architecture

http://cloud.oracle.com/java

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

90

//new to java /

In the occasional “New to Java” series, I try to pick topics that invite a deeper understanding of

the conceptual background of a language construct. Often, novice programmers have a work-

ing knowledge of a concept—that is, they can use it in many situations, but they lack a deeper

understanding of the underlying principles that would lead to writing better code, creating bet-

ter structures, and making better decisions about when to use a given construct. Java interfaces

are often just such a topic.

In this article, I assume that you have a basic understanding of inheritance. Java interfaces

are closely related to inheritance, as are the extends and implements keywords. So, I will discuss

why Java has two diferent inheritance mechanisms (indicated by these keywords), how abstract

classes it in, and what various tasks interfaces can be used for.

As is so often the case, the story of these features starts with some quite simple and elegant

ideas that lead to the deinition of concepts in early Java versions, and the story gets more com-

plicated as Java advances to tackle more-intricate, real-world problems. This challenge led to

the introduction of default methods in Java 8, which muddied the waters a bit.

A Little Background on Inheritance

Inheritance is straightforward to understand in principle: a class can be speciied as an exten-

sion of another class. In such a case, the present class is called a subclass, and the class it’s

extending is called the superclass. Objects of the subclass have all the properties of both the

superclass and the subclass. They have all ields deined in either subclass or superclass and

also all methods from both. So far, so good.PHOTOGRAPH BY JOHN BLYTHE

 The Evolving Nature
of Java Interfaces
Understanding multiple inheritance in Java

MICHAEL KÖLLING

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

91

//new to java /

Inheritance is, however, the equivalent of the Swiss Army knife in programming: it can be

used to achieve some very diverse goals. I can use inheritance to reuse some code I have writ-

ten before, I can use it for subtyping and dynamic dispatch, I can use it to separate speciication

from implementation, I can use it to specify a contract between diferent parts of a system, and

I can use it for a variety of other tasks. These are all important, but very diferent, ideas. It is

necessary to understand these diferences to get a good feel for inheritance and interfaces.

Type Inheritance Versus Code Inheritance

Two main capabilities that inheritance provides are the ability to inherit code and the ability to

inherit a type. It is useful to separate these two ideas conceptually, especially because standard

Java inheritance mixes them together. In Java, every class I deine also deines a type: as soon as

I have a class, I can create variables of that type, for example.

When I create a subclass (using the extends keyword), the subclass inherits both the code

and the type of the superclass. Inherited methods are available to be called (I’ll refer to this as

“the code”), and objects of the subclass can be used in places where objects of the superclass are

expected (thus, the subclass creates a subtype).

Let’s look at an example. If Student is a subclass of Person, then objects of class Student have

the type Student, but they also have the type Person. A student is a person. Both the code and

the type are inherited.

The decision to link type inheritance and code inheritance in Java is a language design

choice: it was done because it is often useful, but it is not the only way a language can be

designed. Other programming languages allow inheriting the code without inheriting the type

(such as C++ private inheritance) or inheriting the type without inheriting the code (which Java

also supports, as I explain shortly).

Multiple Inheritance

The next idea entering the mix is multiple inheritance: a class may have more than one super-

class. Let me give you an example: PhD students at my university also work as instructors. In

that sense, they are like faculty (they are instructors for a class, have a room number, a payroll

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

92

//new to java /

number, and so on). But they are also students: they are enrolled in a course, have a student ID

number, and so on. I can model this as multiple inheritance (see Figure 1).

PhDStudent is a subclass of both Faculty and Student. This way, a PhD student will have the

attributes of both students and faculty. Conceptually this is straightforward. In practice, how-

ever, the language becomes more complicated if it allows multiple inheritance, because that

introduces new problems: What if both superclasses have ields with the same name? What if

they have methods with the same signature but diferent implementations? For these cases,

I need language constructs that specify some solution to the problem of ambiguity and name

overloading. However, it gets worse.

Diamond Inheritance

A more complicated scenario is known as diamond inheritance (see Figure 2). This is where a class

(PhDStudent) has two superclasses (Faculty and Student), which in turn have a common super-

class (Person). The inheritance graph forms a diamond shape.

Now, consider this question: If there is a ield in the top-level superclass (Person, in this

case), should the class at the bottom (PhDStudent) have one copy of this ield or two? It inherits

Faculty Student

PhDStudent

Person

Figure 2. An example of diamond inheritance

Faculty Student

PhDStudent

Figure 1. An example of multiple inheritance

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

93

//new to java /

this ield twice, after all, once via each of its inheri-

tance branches.

The answer is: it depends. If the ield in question

is, say, an ID number, maybe a PhD student should

have two: a student ID and a faculty/payroll ID that

might be a diferent number. If the ield is, however,

the person’s family name, then you want only one

(the PhD student has only one family name, even though it is inherited from both superclasses).

In short, things can become very messy. Languages that allow full multiple inheritance need

to have rules and constructs to deal with all these situations, and these rules are complicated.

Type Inheritance to the Rescue

When you think about these problems carefully, you realize that all the problems with multiple

inheritance are related to inheriting code: method implementations and ields. Multiple code

inheritance is messy, but multiple type inheritance causes no problems. This fact is coupled

with another observation: multiple code inheritance is not terribly important, because you can

use delegation (using a reference to another object) instead, but multiple subtyping is often very

useful and not easily replaced in an elegant way.

That is why the Java designers arrived at a pragmatic solution: allow only single inheritance

for code, but allow multiple inheritance for types.

Interfaces

To make it possible to have diferent rules for types and code, Java needs to be able to specify

types without specifying code. That is what a Java interface does.

Interfaces specify a Java type (the type name and the signatures of its methods) without

specifying any implementation. No ields and no method bodies are speciied. Interfaces can

contain constants. You can leave out the modiiers (public static final for constants and public

for methods)—they are implicitly assumed.

The Java designers arrived at a
pragmatic solution: allow only single
inheritance for code, but allow multiple
inheritance for types.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

94

//new to java /

This arrangement provides me with two types of inheritance in Java: I can inherit a class

(using extends), in which I inherit both the type and the code, or I can inherit a type only (using

implements) by inheriting from an interface. And I can now have diferent rules concerning mul-

tiple inheritance: Java permits multiple inheritance for types (interfaces) but only single inheri-

tance for classes (which contain code).

Benefits of Multiple Inheritance for Types

The beneits of allowing the inheritance of multiple types—essentially of being able to declare

that one object can be viewed as having a diferent type at diferent times—are quite easy to

see. Suppose you are writing a traic simulation, and in it you have objects of class Car. Apart

from cars, there are other kinds of active objects in your simulation, such as pedestrians,

trucks, traic lights, and so on. You may then have a central collection in your program—say, a

List—that holds all the actors:

private List<Actor> actors;

Actor, in this case, could be an interface with an act method:

public interface Actor

{

 void act();

}

Your Car class can then implement this interface:

class Car implements Actor

{

 public void act()

 {

 ...

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

95

//new to java /

 }

}

Note that, because Car inherits only the type, including the signature of the act method, but

no code, it must itself supply the code to implement the type (the implementation of the act

method) before you can create objects from it.

So far, this is just single inheritance and could have been achieved by inheriting a class. But

imagine now that there is also a list of all objects to be drawn on screen (which is not the same

as the list of actors, because some actors are not drawn, and some drawn objects are not actors):

private List<Drawable> drawables;

You might also want to save a simulation to permanent storage at some point, and the objects to

be saved might, again, be a diferent list. To be saved, they need to be of type Serializable:

private List<Serializable> objectsToSave;

In this case, if the Car objects are part of all three lists (they act, they are drawn, and they

should be saved), the class Car can be deined to implement all three interfaces:

class Car implements Actor, Drawable, Serializable ...

Situations like this are common, and allowing multiple supertypes enables you to view a sin-

gle object (the car, in this case) from diferent perspectives, focusing on diferent aspects to

group them with other similar objects or to treat them according to a certain subset of their

possible behaviors.

Java’s GUI event-processing model is built around the same idea: event handling is

achieved via event listeners—interfaces (such as ActionListener) that often just implement

a single method—so that objects that implement it can be viewed as being of a listener type

when necessary.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

96

//new to java /

Abstract Classes

I should say a few words about abstract classes, because it is common to wonder how they relate

to interfaces. Abstract classes sit halfway between classes and interfaces: they deine a type

and can contain code (as classes do), but they can also have abstract methods—methods that are

speciied only, but not implemented. You can think of them as partially implemented classes

with some gaps in them (code that is missing and needs to be illed in by subclasses).

In my example above, the Actor interface could be an abstract class instead. The act method

itself might be abstract (because it is diferent in each speciic actor and there is no reasonable

default), but maybe it contains some other code that is common to all actors.

In this case, I can write Actor as an abstract class, and the inheritance declaration of my Car

class would look like this:

class Car extends Actor implements Drawable, Serializable ...

If I want several of my interfaces to contain code, turning them all into abstract classes does

not work. As I stated before, Java allows only single inheritance for classes (that means only one

class can be listed after the extends keyword). Multiple inheritance is for interfaces only.

There is a way out, though: default methods, which were introduced in Java 8. I’ll get to

them shortly.

Empty Interfaces

Sometimes you come across interfaces that are empty—they deine only the interface name

and no methods. Serializable, mentioned previously, is such an interface. Cloneable is another.

These interfaces are known as marker interfaces. They mark certain classes as possessing a spe-

ciic property, and their purpose is more closely related to providing metadata than to imple-

menting a type or deining a contract between parts of a program. Java, since version 5, has had

annotations, which are a better way of providing metadata. There is little reason today to use

marker interfaces in Java. If you are tempted, look instead at using annotations.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

97

//new to java /

A New Dawn with Java 8

So far, I have purposely ignored some new features that were introduced with Java 8. This is

because Java 8 adds functionality that contradicts some of the earlier design decisions of the

language (such as “only single inheritance for code”), which makes explaining the relationship

of some constructs quite diicult. Arguing the diference between and justiication for the exis-

tence of interfaces and abstract classes, for instance, becomes quite tricky. As I will show in a

moment, interfaces in Java 8 have been extended so that they become more similar to abstract

classes, but with some subtle diferences.

In my explanation of the issues, I have taken you down the historical path—explaining

the pre-Java 8 situation irst and now adding the newer Java 8 features. I did this on purpose,

because understanding the justiication for the combination of features as they are today is pos-

sible only in light of this history.

If the Java team were to design Java from scratch now, and if breaking backward compat-

ibility were not a problem, they would not design it in the same way. The Java language is, how-

ever, not foremost a theoretical exercise, but a system for practical use. And in the real world,

you must ind ways to evolve and extend your language without breaking everything that has

been done before. Default methods and static methods in interfaces are two mechanisms that

made progress possible in Java 8.

Evolving Interfaces

One problem in developing Java 8 was how to evolve interfaces. Java 8 added lambdas and sev-

eral other features to the Java language that made it desirable to adapt some of the existing

interfaces in the Java library. But how do you evolve an interface without breaking all the exist-

ing code that uses this interface?

Imagine you have an interface MagicWand in your existing library:

public interface MagicWand

{

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

98

//new to java /

 void doMagic();

}

This interface has already been used and implemented by many classes in many projects. But

you now come up with some really great new functionality, and you would like to add a really

useful new method:

public interface MagicWand

{

 void doMagic();

 void doAdvancedMagic();

}

If you do that, then all classes that previously implemented this interface break, because they

are required to provide an implementation for this new method. So, at irst glance, it seems you

are stuck: either you break existing user code (which you don’t want to do) or you’re doomed to

stick with your old libraries without a chance to improve them easily. (In reality, there are some

other approaches that you could try, such as extending interfaces in subinterfaces, but these

have their own problems, which I do not discuss here.) Java 8 came up with a clever trick to get

the best of both worlds: the ability to add to existing interfaces without breaking existing code.

This is done using default methods and static methods, which I discuss now.

Default Methods

Default methods are methods in interfaces that have a method body—the default implementa-

tion. They are deined by using the default modiier at the beginning of the method signature,

and they have a full method body:

public interface MagicWand

{

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

99

//new to java /

 void doMagic();

 default void doAdvancedMagic()

 {

 ... // some code here

 }

}

Classes that implement this interface now have the chance to provide their own implementa-

tion for this method (by overriding it), or they can completely ignore this method, in which case

they receive the default implementation from the interface. Old code continues to work, while

new code can use this new functionality.

Static Methods

Interfaces can now also contain static methods with implementations. These are deined by

using the usual static modiier at the beginning of the method signature. As always, when

writing interfaces, the public modiier may be left out, because all methods and all constants in

interfaces are always public.

So, What About the Diamond Problem?

As you can see, abstract classes and interfaces have become quite similar now. Both can contain

abstract methods and methods with implementations, although the syntax is diferent. There

still are some diferences (for instance, abstract classes can have instance ields, whereas inter-

faces cannot), but these diferences support a central point: since the release of Java 8, you have

multiple inheritance (via interfaces) that can contain code!

At the beginning of this article I pointed out how the Java designers treaded very carefully

to avoid multiple code inheritance because of possible problems, mostly related to inheriting

multiple times and to name clashes. So what is the situation now?

As usual, the Java designers devised the following sensible and practical rules to deal with

these problems:

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

100

//new to java /

■■ Inheriting multiple abstract methods with the same name is not a problem—they are viewed

as the same method.

■■ Diamond inheritance of ields—one of the diicult problems—is avoided, because interfaces

are not allowed to contain ields that are not constants.
■■ Inheriting static methods and constants (which are also static by deinition) is not a problem,

because they are preixed by the interface name when they are used, so their names do not clash.
■■ Inheriting from diferent interfaces multiple default methods with the same signature and

diferent implementations is a problem. But here Java chooses a much more pragmatic solu-

tion than some other languages: instead of deining a new language construct to deal with

this, the compiler just reports an error. In other words, it’s your problem. Java just tells you,

“Don’t do this.”

Conclusion

Interfaces are a powerful feature in Java. They are useful in many situations, including for

deining contracts between diferent parts of the program, deining types for dynamic dispatch,

separating the deinition of a type from its implementation, and allowing for multiple inheri-

tance in Java. They are very often useful in your code; you should make sure you understand

their behavior well.

The new interface features in Java 8, such as default methods, are most useful when you

write libraries; they are less likely to be used in application code. However, the Java libraries

now make extensive use of them, so make sure you know what they do. Careful use of interfaces

can signiicantly improve the quality of your code. </article>

[An earlier version of this article ran in the September/October 2016 issue of Java Magazine. —Ed.]

Michael Kölling is a Java Champion and a professor at the University of Kent, England. He has published two

Java textbooks and numerous papers on object orientation and computing education topics, and he is the lead

developer of BlueJ and Greenfoot, two educational programming environments. Kölling is also a Distinguished

Educator of the ACM.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

101

//ix this /

If you’re a regular reader of this quiz, you know that these questions simulate the level of dif-

iculty of two diferent certiication tests. Those marked “intermediate” correspond to ques-

tions from the Oracle Certiied Associate exam, which contains questions for a preliminary level

of certiication. Questions marked “advanced” come from the 1Z0-809 Programmer II exam,

which is the certiication test for developers who have been certiied at a basic level of Java 8

programming knowledge and now are looking to demonstrate more-advanced expertise.

These questions rely on Java 8. I’ll begin covering Java 9 in future columns, of course, and I

will make that transition quite clear when it occurs.

I’d also like to welcome Mikalai Zaikin to this column as a coauthor. He’s been working

on these questions with me for some time now, so you’ve already been seeing the beneit of

his work.

Question 1 (advanced). Given this code:
public class OneValue {

 private final int x;

}

Consider these possible changes:

Change 1. Change the declaration of x as follows:
 private final int x = 99;

Change 2. Add to the class as follows:
 public OneValue() {

Quiz Yourself
More intermediate and advanced test questions

SIMON ROBERTS

MIKALAI ZAIKIN

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-808
https://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=5001&get_params=p_exam_id:1Z0-809

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

102

//ix this /

 x = 100;

 }

Change 3. Add to the class as follows:
 private void setX(int x) {

 this.x = x;

 }

 public OneValue() {

 setX(100);

 }

Which are true? Choose two.

A. The code compiles as it is.

B. The code compiles if change 1 is done.

C. The code compiles if change 2 is done.

D. The code compiles if change 3 is done.

E. The code compiles if change 1 and change 2 are both done.

Question 2 (advanced). Which of the following classes produce immutable objects? Choose two.

A.

public class Immut1 {

 final int[] data = { 1, 1, 2, 3, 5, 8, 13 };

 String name;

 public Immut1(String n) { this.name = n; }

}

B.

public class Immut2 {

 final int[] data = { 1, 1, 2, 3, 5, 8, 13 };

 final String name;

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

103

//ix this /

 public Immut2(String n) { this.name = n; }

}

C.

public class Immut3 {

 private int x;

 public Immut3(int x) { this.x = x; }

}

D.

public class Immut4 {

 private List<String> ls;

 public Immut4() {

 ls = Arrays.asList("Fred", "Jim", "Sheila");

 }

 public String get(int idx) {

 return ls.get(idx);

 }

}

E.

public class Immut5 {

 private List<String> ls;

 public Immut5(String... strings) {

 ls = Collections.unmodifiableList(Arrays.asList(strings));

 }

 public String get(int idx) {

 return ls.get(idx);

 }

}

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

104

//ix this /

Question 3 (intermediate). Given this method:
public final void doStuff(int val) /* point A */ {

 if (val < 0) throw new NullPointerException();

 if (val < 1) throw new IOException();

 if (val < 2) throw new OutOfMemoryError();

}

Which of the following is best?

A. Insert the following at point A:
throws Exception

B. Insert the following at point A:
throws NullPointerException, OutOfMemoryError

C. Insert the following at point A:
throws IOException, OutOfMemoryError, SQLException

D. Insert the following at point A:
throws IOException

E. Insert the following at point A:
throws NullPointerException

Question 4 (intermediate). Given this:
String s = "Hello";

StringBuilder sb = new StringBuilder("Hello");

StringBuilder sb2 = new StringBuilder("Hello");

// line n1

Which is true?

A. Placed at line n1, the following fragment:
System.out.println(sb + sb);

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

105

//ix this /

prints this:
HelloHello

B. Placed at line n1, the following fragment:
System.out.println(sb.equals(sb2));

prints this:
true

C. Placed at line n1, the following fragment compiles successfully:
String val = sb.equals(s)?sb:"Differ";

System.out.println(val);

D. Placed at line n1, the following fragment:
CharSequence val = sb.equals(s)?sb:"Differ";

System.out.println(val);

prints this:
Hello

E. Placed at line n1, the following fragment:
System.out.println(sb.equals(s)?sb:"Differ");

prints this:
Differ

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

106

//ix this /

Answer 1. The correct answers are options B and C. Java Language Speciication section 8.3.1.2

says this about inal ields: “A blank inal instance variable must be deinitely assigned at the

end of every constructor of the class in which it is declared, or a compile-time error occurs.”

This means that the inal ield x must receive exactly one explicit assignment, which must

happen before the constructor is complete. This tells you immediately that option A must be

incorrect, because in the original code presented in the question there is no assignment to the

ield. Note that the ield as declared is termed a “blank inal” (the terminology used in the Java

speciication paragraph above) and as such, the default assignment to zero that is implicit for all

object members does not satisfy the requirement.

Change 1 assigns a value to x as part of its declaration and, therefore, x is deinitely assigned

even before any constructor runs. Therefore, option B is correct.

Change 2 adds a simple constructor that initializes the value of x. This change, made in

isolation, would result in exactly one constructor and causes that constructor to unconditionally

assign a value to x. Because the blank inal is deinitely assigned, exactly once, before the end of

the only constructor, this change works, and option C is correct.

Change 3 suggests adding a constructor that might seem functionally equivalent to the one

proposed in change 2. However, in this case, the change fails. The private method that attempts

to assign the value to x will not compile, because it’s possible for it to be invoked after the object

has been initialized. Because this fails to compile, option D must be incorrect.

Performing both change 1 and change 2 also fails, because this would result in an attempt

to perform two assignments to the variable x, and the Java speciication demands exactly one

assignment. Therefore, option E is also incorrect.

Answers

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

107

//ix this /

Answer 2. The correct answers are options C and D. An object is immutable if no syntactically

permissible interaction with it by external code can change its state after construction, and no

code within the class ever makes any such change either. Literally, once it is created, the value

remains the same.

Now, before analyzing this question, be aware that if you decide to create classes that yield

immutable objects (which is a design style that can reap signiicant rewards in terms of correct-

ness, particularly in concurrent systems), you should do a better job than the examples shown

here. In particular, although you’ll see that

the final keyword is not suicient to render

everything it touches unalterable, it should

almost certainly be used anyway. In particu-

lar, it has some value in concurrency that

is not part of this discussion. Also keep in

mind that it’s possible to break many forms

of immutability through relection, which

might have unexpected consequences.

In option A, the ields have default accessibility, rather than being private, so it’s a simple

matter for any other class that has access (that is, any other class in the same package) to mutate

the value of the String name to point to a diferent string. Therefore, option A is incorrect.

In option B, the String name ield has been marked inal, so even though it’s accessible to

other members of the package, it cannot be mutated; it must refer to the string object that’s

passed into the constructor. Strings themselves are immutable, so that ield’s value can never

be changed. However, the contents of final int [] data can, in fact, be changed (and actually, it

could be changed in option A, too, although you already know option A is incorrect based on the

string ield). This is because the final keyword prevents the value of data—which is a pointer—

from being modiied. So, data can never refer to any array other than the one with which it’s

initialized. Of course, the length of arrays can never change after they are created, but their

contents can be changed. Therefore, the values in the data array are actually mutable by any

code in other classes in the same package. Hence, option B is incorrect.

This question investigates the rules and
purpose of Java’s exception mechanism,
and it also dares to stray into that troublesome
territory of asking what’s “best” rather than
merely what’s “correct.”

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

108

//ix this /

In option C, there is a single ield: int x. The ield is private but not inal. The value of the

ield is initialized with a copy of the value passed to the constructor. (All arguments in non-

remote Java method invocations are passed by value, and with primitive types, the “value”

really is the value being represented, not the “value of the reference.”) Because of this, changes

to the original variable that was passed as an argument to the constructor do not afect the

value of x. Also, no code in the class ever changes the value of x after the object is constructed.

So, even though the ield is not marked inal, instances of this class are immutable, and option

C is correct.

In option D, you again see a private, noninal ield. This time, it’s List<String> ls. Because

it’s private, and nothing outside the class ever has a copy of the reference value in ls, nothing

will ever change the contents of the list

or point the variable at a diferent list.

Therefore, option D is correct.

Option E is a little more subtle. You

have a variable, ls, which is identical

to the one described in option D.

Therefore, you know that nothing

changes the value of ls to make it refer to a diferent list object. If you can be sure that the list

that ls refers to cannot be altered in any way, you would know the object is immutable.

The variable ls is initialized to refer to a list created by the Arrays.asList method, which

is a utility that describes itself as creating a “structurally immutable list”—which sounds

promising; the list will not allow the addition or removal of elements. However, the list cre-

ated by Arrays.asList actually honors attempts to reassign any given element of the list. But to

counter that, this list is wrapped in Collections.unmodifiableList, which puts a proxy wrapper

around the object, so that any attempt to modify the list will throw an exception. Surely this

must be immutable, right? Well, it turns out that the list that’s created uses the provided array

as its backing storage. Therefore, if the caller of the constructor chooses to provide an explicit

String [] as its argument, any changes made to that array will be relected in the list. Because

of this, the objects are not reliably immutable and option E is incorrect.

It’s prohibited for an overriding method to
declare checked exceptions that were not already
permitted in the context of the overridden method.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

109

//ix this /

If you want to examine this efect, try running this code:

String [] names = {"Tony", "Jane"};

Immut5 i5 = new Immut5(names);

System.out.println("i5.get(0) " + i5.get(0));

names[0] = "Anthony";

System.out.println("i5.get(0) " + i5.get(0));

Answer 3. The correct answer is option D. This question investigates the rules and purpose of

Java’s exception mechanism, and it also dares to stray into that troublesome territory of asking

what’s “best” rather than merely what’s “correct.” However, we hope to make a good case for

that value judgment, and while we are happy to include this question because it creates a useful

discussion—both about Java’s exception mechanism and about how to evaluate a judgment like

this—we doubt that this question would survive unchanged in the real exam.

The irst point is that Java distinguishes checked exceptions from unchecked exceptions

and errors. In particular, a method that might throw a checked exception must announce this

in that method’s signature. In this question, the appropriate point for the syntax that declares

such information is marked /* point A */. Therefore, the question is really asking what excep-

tion declaration would best suit this method. It’s pretty clear that any situation that doesn’t

even compile cannot be considered satisfactory, so as long as some of the options would compile

they must be “better than” any that do not. Consider the issue of compilation irst.

If the method might throw any checked exceptions, it must carry a declaration that

announces that. In this case, the only checked exception that is potentially thrown is the

IOException; so at a minimum, the method must declare something that encompasses that

exception. Options B and E fail on that point, because they declare unchecked exceptions.

(Note that OutOfMemoryError falls into the category of “unchecked,” although it’s a subclass of

Throwable, not of Exception.) For convenience, we’ll simply use the term unchecked exceptions to

include errors that are not parents of IOException. Therefore, options B and E are incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

110

//ix this /

However, the remaining options all declare either IOException or a parent class of

IOException. It’s important to note that a throws clause that mentions a parent exception class is

suicient to encompass any child classes. Because of this, options A, C, and D all allow the code

to compile correctly, so how can you choose the “best” option among these?

When you declare an exception in a throws clause, you impose an obligation on the caller

of the method; the caller must do something about the exception. Also, the throws clause is

a form of description of the type of problems that can arise when calling the method. These

points both suggest that a throws clause should be

as speciic as possible. To be more general or to

mention irrelevant exceptions might place an addi-

tional burden on the caller by creating a perceived

requirement to handle situations that don’t in fact

arise. Further, additional generality will likely have

the efect of hiding the real problem that might

arise, making it harder for the caller to know how to respond if an exception is reported. On

this basis, it’s clear that option C, which reports one unchecked exception (OutOfMemoryError)

with a checked exception that cannot arise, is unlikely to qualify as “best.” Therefore, option C

is incorrect.

By the same arguments, you can also see that option A, which simply (and vaguely) reports

that an Exception might arise, is also less helpful than option D, which gets directly to the point

of reporting the single checked exception that could arise from the method. As a result, you can

conclude that option A is incorrect, and option D is the correct answer.

There’s another small point to consider as part of this discussion. The question mentions

that the method is inal. Why would that make any diference? It’s certainly a tenuous point in

this case, but it helps justify the “best” value judgment. Often, an abstract method in an inter-

face declares a fairly general exception (consider the close() method in the AutoCloseable inter-

face, which throws Exception). Given that such a method cannot possibly throw any exceptions

because it doesn’t have any implementation, why would this be? The answer is that it’s prohib-

Testing equality between diferent
types almost always returns false
regardless of the contents.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

111

//ix this /

ited for an overriding method (which, of course, includes the methods that implement interface

abstract methods) to declare checked exceptions that were not already permitted in the context

of the overridden method. Without this restriction, you could have a reference of a parent type,

and the compiler would let you call a method on it without handling a particular checked excep-

tion, but if the reference turns out to refer—at runtime—to an implementation that does throw

that checked exception, you would have efectively cheated the checked exception mechanism.

Generally, allowing an overriding method to do something not permitted for the overridden

method would break the Liskov Substitution Principle, and in this speciic case, it would break

the protections provided by checked exceptions.

This means that if a method is expected to be overridden, it’s not unreasonable to declare

it as throwing some checked exceptions that simply don’t arise in its current form. Had the

method not been inal, it would have been much harder to make a convincing case that option C

was not the “best” choice (because it allows additional lexibility). But as it is, declaring throws

SQLException is just a source of confusion, because the method does not throw SQLException nor

is it possible that any overriding method might do so.

Answer 4. The correct answer is option E. This question investigates several aspects of

StringBuilder and its relationship with String.

In option A, the code uses the + operator with two operands that are StringBuilder objects.

One of Java’s “special case” rules is that the only allowed operator overloading is the language-

deined ability to concatenate String types using the + operator. Another fundamental rule is

that when a + operator has a String type as an operand, if the other operand is not a String, it

will be converted into one—and that, of course, brings up a third fundamental rule: in Java any

data type can be converted into a String. (Admittedly, the conversion isn’t always very helpful,

but it’s deinitely legal.) However, in this case, although both operands represent “text” in the

general sense—indeed, they’re both instances of the interface CharSequence—neither operand

is a String. Therefore, the code fails to compile, because it attempts to use the + operator with

illegal arguments. Because of this, option A is incorrect.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

112

//ix this /

Option B considers equality testing. This turns out to be a pretty simple rule, too. Testing

equality between diferent types almost always returns false regardless of the contents (with

some exceptions—take a look at the API-documented requirements for the equals methods

in the List and Set implementations). However, in this question, you have two StringBuilders

that contain the same text. In this situation, it’s easy to assume that the two objects will

test as equal. However, that’s not at all the case; indeed, relatively few of the core Java API

classes implement a useful equals method, and StringBuilder is not one of them. The way you

can determine this is by looking at the documentation of the class. Look at String’s equals

method, and you’ll see the API docs deine how it tests for identical character sequences.

But, look at StringBuilder; the only mention of the equals method is that it’s “inherited from

java.lang.Object.” Of course, the default equals method deined by Object tests to see if two ref-

erences refer to the same object in memory. As a result, the fragment in option B actually prints

false, and option B is incorrect.

The inal three options all hinge on related points. String and StringBuilder are diferent

types on independent branches of the inheritance tree. As such, they are not assignment-

compatible with one another. However, they also have elements of a shared type hierarchy;

they’re both subclasses of Object, and they both implement the CharSequence interface.

In these options, a ternary expression has String and StringBuilder as the two option val-

ues. The type of such an expression cannot be String; it must be some common parent of both

arguments. Therefore, the attempt to assign the result of the ternary expression to the String

variable val in option C will cause a compilation failure. Therefore, option C is incorrect.

In option D, the type of the variable val has been changed to CharSequence. This now forms a

legal, compilable fragment. However, the test in the ternary expression sb.equals(s) will evalu-

ate to false, because the arguments are of difering types, and StringBuilder does not handle

that. Given that the test evaluates to false, the ternary expression as a whole evaluates to the

third operand, and the fragment prints Differ. Because of this, option D is incorrect.

In option E, the intermediate variable val has been removed and the ternary expression

is the argument to the println call. In this case, it’s up to the compiler to ind a suitable type

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

113

//ix this /

for the expression, and it doesn’t really matter if it chooses Object or CharSequence. Either is a

legitimate argument to the println method and, consequently, the code compiles successfully.

Of course, the expression sb.equals(s) still evaluates to false and the output that is printed is

Differ—as it was in option D. Therefore, option E is correct.

As a side note, the CharSequence interface isn’t explicitly mentioned in the exam objec-

tives. However, both String and StringBuilder are, and this interface is an aspect of both. We

doubt you’ll come across it in the real exam, but our excuse is that by using it here, we were able

to make the example a little more interesting and, perhaps, teach something useful. We hope

you’ll forgive the indulgence! </article>

Simon Roberts joined Sun Microsystems in time to teach Sun’s irst Java classes in the UK. He created the

Sun Certiied Java Programmer and Sun Certiied Java Developer exams. He wrote several Java certiication

guides and is currently a freelance educator who publishes recorded and live video training through Pearson

InformIT (available direct and through the O’Reilly Safari Books Online service). He remains involved with

Oracle’s Java certiication projects.

Mikalai Zaikin is a lead Java developer at IBA IT Park in Minsk, Belarus. During his career, he has helped Oracle

with development of the Java certiication exams, and he has been a technical reviewer of several Java certii-

cation books, including three editions of the famous Sun Certified Programmer for Java study guides by Kathy

Sierra and Bert Bates.

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=

ORACLE.COM/JAVAMAGAZINE ////////////////////////////////// JANUARY/FEBRUARY 2018

114

//contact us /

Comments
We welcome your comments, correc-

tions, opinions on topics we’ve covered,

and any other thoughts you feel impor-

tant to share with us or our readers.

Unless you speciically tell us that your

correspondence is private, we reserve

the right to publish it in our Letters to

the Editor section.

Article Proposals
We welcome article proposals on all

topics regarding Java and other JVM

languages, as well as the JVM itself.

We also are interested in proposals for

articles on Java utilities (either open

source or those bundled with the JDK).

Finally, algorithms, unusual but useful

programming techniques, and most other

topics that hard-core Java programmers

would enjoy are of great interest to us,

too. Please contact us with your ideas

at javamag_us@oracle.com and we’ll

give you our thoughts on the topic and

send you our nifty writer guidelines,

which will give you more information

on preparing an article.

Customer Service
If you’re having trouble with your sub-

scription, please contact the folks at

java@omeda.com, who will do what-

ever they can to help.

Where?
Comments and article proposals should

be sent to our editor, Andrew Binstock,

at javamag_us@oracle.com.

While it will have no inluence on our

decision whether to publish your article

or letter, cookies and edible treats will

be gratefully accepted by our staf at

Java Magazine, Oracle Corporation,

500 Oracle Parkway, MS OPL 3A-3133,

Redwood Shores, CA 94065, USA.

 World’s shortest subscription form

 Download area for code and

other items

 Java Magazine in Japanese

magazine

By and for the Java community

http://oracle.com/javamagazine
https://twitter.com/oraclejavamag
https://www.facebook.com/JavaMagazineOracle
mailto:JAVAMAG_US%40ORACLE.COM?subject=
mailto:javamag_us%40oracle.com?subject=
mailto:java%40omeda.com?subject=
mailto:javamag_us%40oracle.com?subject=
https://www.sub-forms.com/dragon/init.do?site=ora6028_jfnew
http://bit.ly/2b2tXeb
http://bit.ly/2b2tXeb
http://www.oracle.com/technetwork/jp/articles/java/overview/index.html

