
AI Is Poised to
Ride A New Wave
Today’s Communications
of the ACM
How Important Is IT?
Cryptovirology:
The Birth, Neglect, and
Explosion of Ransomware

Reimagining
the Avatar
Dream

COMMUNICATIONS
OF THE ACMCACM.ACM.ORG 07/2017 VOL.60 NO.07

Association for
Computing Machinery

http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=Cover&exitLink=http%3A%2F%2FCACM.ACM.ORG

40 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

practice

UN IFIED MODELING LANGUAGE (UML)6 is the de facto
standard for representing object-oriented designs. It
does a fine job of recording designs, but it has a severe
problem: its diagrams don’t convey what humans
need to know, making the diagrams difficult to
understand. This is why most software developers use
UML only when forced to.1

For example, the UML diagrams in Figures 1 and 2
portray the embedded software in a fax machine.
While these diagrams are attractive, they do not even
tell you which objects control which others. Which
object is the topmost controller over this fax machine?
You don’t know. Which object(s) control the Modem
object? You don’t know.

People understand an organization,
such as a corporation, in terms of a
control hierarchy. When faced with an
organization of people or objects, the
first question usually is: “What’s con-
trolling all this?” Surprisingly, UML
has no concept of one object control-
ling another. Consequently, in every
type of UML diagram, no object ap-
pears to have greater or lesser control
than its neighbors. This absence of a
control hierarchy in software design
does much harm in the following ways:

 ˲ Designs are difficult to understand.
Showing no hierarchy is like portraying
a corporation by drawing a line between
every pair of employees who interact
with each other. Such a chart would
rapidly become incomprehensible spa-
ghetti. An organizational chart is drawn
as a control hierarchy for good reason:
people can readily understand them,
regardless of the corporation’s size.

 ˲ Because any object can interact
with any other object in any way de-
sired, code structure slides into disor-
ganization as people add features and
interactions to objects during design
and implementation.

 ˲ Maintenance becomes slower and
more error-prone because learning
curves are steeper. In addition, main-
tainers can and do insert hacks any-
where, causing code to decay.

These problems mean designs tend
to become messy during both initial
implementation and maintenance, re-
sulting in more bugs and delays.

The Basics of an IDAR Graph
To be useful, a graph that portrays
software design must communicate
in a way that humans understand. An
organization of objects in software is
analogous to a human organization,
and almost without exception, an or-
ganization of people is portrayed as a
control hierarchy, with the topmost
person having the broadest span of
control. Based on this idea, Figure 3 is
a simple IDAR graph that portrays part
of the same fax machine design shown
in Figures 1 and 2, but expressed as a
control hierarchy.

The
IDAR
Graph

DOI:10.1145/3079970

 Article development led by
queue.acm.org

An improvement over UML.

BY MARK A. OVERTON

http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fdx.doi.org%2F10.1145%2F3079970
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=40&exitLink=http%3A%2F%2Fqueue.acm.org

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 41

P
H

O
T

O
 B

Y
 F

A
B

R
I

K
A

 S
I

M
F

In an IDAR graph, boxes repre-
sent objects. If a class has only one
instance (the most common case),
then the box is labeled with the class
name. An arrow connecting two boxes
means that the upper object com-
mands (and thus controls) the lower
object. Such command arrows always
point down. In Figure 3, the Fax ob-
ject is the topmost controller, which
commands the Receive and Send
objects, which in turn control Image-
Proc (image processing). Command ar-
rows may be labeled with the names of
commands that are sent. For example,
Fax commands Send to sendFax.
Note that ImageProc has two bosses.
Having multiple bosses is uncommon
in human organizations but is common
(and encouraged) in software to prevent
redundant implementations.

Objects need to communicate in
more ways than commands. For exam-
ple, they often need to exchange data
and inform each other about events
and results. In an IDAR graph, such
non-command communications are
called notices and are shown as floating
arrows. For example, in Figure 3, Send
tells Fax that transmission is done via
the done notice.

Both commands and notices are
merely method calls. This means that
the public methods in each object are
divided into two groups: commands
and notices. Software designers must
give careful thought to which methods
will be commands, because they deter-
mine the hierarchy. Commands and
notices have constraints, which are
precisely defined later in this article.

A note about terminology: when you
call a command (method) in an object,
you are said to be commanding (or send-
ing a command to) that object; when you
call a notice in an object, you are notify-
ing (or sending a notice to) that object.

More Features of IDAR Graphs
A graph of a design should portray oth-
er salient features, such as threading,
data flows, and the use of indirection.
The complete IDAR graph of the fax
machine in Figure 4 exemplifies some
of these additional features.

The horizontal line above the Con-
nect and Negotiate boxes is analo-
gous to a horizontal line in an organi-
zational chart: it groups subordinates
under their manager. In an IDAR graph,
such a rail (as it’s known) is more gener-
al, as it indicates that all objects above

the line (called superiors or bosses) com-
mand all objects below it (called subor-
dinates or workers). In this fax machine,
two superiors (Receive and Send)
command three subordinates (Con-
nect, Negotiate, and ImageProc).

An object containing a thread is said
to be active and is denoted with double
vertical lines on each side of its box.
This notation was taken from UML.
In the fax machine design in Figure 4,
Fax and ImageProc are active.

Indirect method-calls are indicated
by a bubble (circle) placed on the tail of
the appropriate arrow. Such indirection
can be explicit in the source code or im-
plicit using polymorphic inheritance.
Indirection is commonly used for no-
tices sent from a subordinate to one of
multiple superiors, such as the con-
nected notice in Figure 4 that is sent
from Connect to Receive or Send.

A subsystem is a separate hierar-
chy (a separate graph) with a subman
(subsystem manager) as its topmost
object. A subman controls its subsys-
tem and is portrayed as an elongated
hexagon. In a graph that commands a
subsystem, only the subman is drawn.
For example, in Figure 4, Printer and
Scanner are the submans of their re-

42 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

practice

 ˲ Aid. A command or notice may,
unknown to its callers, aid its object by
performing part or all of a previously
commanded action.

 ˲ Role. A brief role is written for each
object and method that summarizes
the service it offers, avoiding any as-
pect of its implementation (including
aid). Callers may rely on only what is
stated in roles.

The Down rule ensures every design
is a command hierarchy consisting of
superiors and subordinates (bosses
and workers). This rule produces a
DAG (directed acyclic graph), so it’s
also known as the DAG rule. The Role
rule requires that every method or ob-
ject fulfill its role, doing no more and
no less, precluding unexpected side ef-
fects. The Role and Down rules together
force every design to be a role hierar-
chy. The Aid rule gives designers more
flexibility by allowing public methods
to help secretly with previously com-
manded duties, in addition to fulfilling
their own roles. These rules don’t apply
to cross-cutting concerns.2

It’s also helpful to think in terms
of constraints on public behavior. Com-
mands have one constraint: they must go
down in the hierarchy (Down rule). No-
tices also have one constraint: they may
only convey information (Identify rule).

Roles are important and warrant
further discussion. A role is a purpose,
responsibility, or duty. The Role rule
requires that every object and method
have a role that can be summarized in
a few words, preferably containing only
one verb. An example is: “Sends a fax.”
In an IDAR graph, the broadest role
(greatest responsibility) is at the top,
and the narrowest (most specialized)
roles are at the bottom.

Inheritance creates a hierarchy, so
why not use it? Unfortunately, inheri-
tance creates a hierarchy of categories,
which is less useful than a hierarchy
of roles.

To see why, examine Figure 5, which
shows a UML inheritance hierarchy
for a CD player. DiskMotor and La-
serMotor are subclasses of Motor, so
they are in the motor category. You care
little about their category, however, be-
cause you need to know which objects
control these motors.

Likewise, Laser, Motor, and Au-
dio are subclasses of ElectronicDe-
vice, but that does not help because

spective subsystems, which should be
shown in separate graphs.

A dashed arrow denotes a data flow.
Notice-arrows often parallel a data
flow, because data flows are usually im-
plemented using notices. An example
is the pixelRow notice sent from the
Scanner subsystem to ImageProc.

Notice that the names of some com-
mands and notices in Figure 4 are pre-
fixed with numbers. These optional
sequence numbers show the order of
actions composing an operation. In this
case, they show the sequence of calls to
send a fax. A copy of this graph could be
enhanced to show the sequence for re-
ceiving a fax. Such annotated graphs re-
place sequence diagrams in UML. They
are easier to understand because you can
see which actions are commands versus
responses, in addition to their order.

It might surprise you that the IDAR
graph in Figure 4 is the same design as
the UML diagrams in Figures 1 and 2.
Compare these diagrams. In the IDAR
graph, you can easily see which objects
control which others, thus revealing
how this design operates.

Four Rules
The principles underlying IDAR graphs
can be expressed in the form of four
rules. They form the acronym IDAR, the
namesake of these graphs. The rules are:

 ˲ Identify. Each public method in an
object is identified as either a command
or a notice. From its caller’s viewpoint, a
notice only imports or exports needed in-
formation. A command may do anything.

 ˲ Down. When graphing the calls to
commands among objects, the arrows
must point down.

Speed
Dials

CtlPanel

Fax

Send

Image
Proc

Receive

Connect

Modem

Scanner

Printer

Negotiate

Figure 1. UML class diagram for a fax machine.

Figure 2. UML communication diagram for sending a fax.

:Speed
Dials

:CtlPanel

:Fax

:Send

9:negotiate

3:connect

pixelRow

11:response10:xfer

5:dialTone
7:answered

4:hookUpDn
6:dial

1:send
Pressed

8:
connected

13:scan

14:pages

xferBulk

12:speed

2:sendFax 15:done

:Image
Proc

:Receive

:Connect

:Modem

:Scanner

:Printer

:Negotiate

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 43

practice

you need to know which objects with
broader roles command these devic-
es. An inheritance hierarchy portrays
categories, which are seldom helpful
except in GUIs; it does not portray
what you need to know—the hierar-
chy of roles.

Comparing UML to IDAR. An easy
way to compare UML and IDAR is to
follow an operation—for example,
sending a fax. The sequence num-
bers on the commands and notices
in Figure 4 indicate that after the user
presses the Send button on the control
panel, the CtlPanel object calls the
sendPressed notice in Fax, which
is clearly the main controller over the
entire fax machine, and it commands
Send to sendFax. Based on its high
position in the hierarchy, you can see
that Send handles the high-level as-
pects of sending faxes. It commands
Connect to connect to the receiving
machine, and Connect in turn com-
mands Modem to take the phone off
the hook via the hookUpDn method.
After Connect gets the dialTone no-
tice from Modem, it commands Modem
to dial and waits for its answered no-
tice. Connect then sends a connected
notice back to Send. The figure also
shows that Send commands Scanner
to scan, and that data (the dashed ar-
rows) will flow from Scanner into Im-
ageProc and then into the Modem via
the pixelRow and xferBulk notices.
This graph reveals the structure of this
software and how it works.

Figures 1, 2, and 6 are the UML
class, communication, and sequence
diagrams, respectively, for the same
fax machine design. The communica-
tion diagram (Figure 2) has the same
sequence numbers as the IDAR graph,
making comparison easier.

Let’s use the UML diagrams to
show how a fax is sent. Which objects
have primary roles? It’s hard to tell.
Which interactions among objects are
the most important? It’s hard to tell.
Which objects are controllers versus
workers? It’s hard to tell. The best you
can do is follow messages sequential-
ly on the communication or sequence
diagram, and even then it is difficult
to determine which objects control
which others, or which objects have
broad versus narrow roles. UML fails
to convey roles or their ranks, making
designs hard to understand.

Benefits of IDAR Graphs
IDAR graphs provide several advan-
tages over UML, two of which are pre-
dominant.

Ease of understanding. An IDAR
graph is easier for developers to under-
stand than the corresponding class,
communication, and sequence dia-
grams in UML for the following reasons:

 ˲ The role hierarchy in IDAR is a gen-
eralized form of the AH (means-end
abstraction hierarchy) employed in
cognitive engineering,7 which is known

to impart understanding by means of
the why-what-how triad. This triad con-
sists of an object, its superiors, and its
subordinates. It provides the following
insights: the purposes of the object’s
superiors tell you why the object exists;
the role of the object tells you what it
does; and the purposes of its subordi-
nates indicate how it works. UML lacks
an AH, so it cannot tell you why an ob-
ject exists or how it works.

 ˲ The hierarchy in an IDAR graph
reveals which objects control which

Figure 3. Incomplete IDAR graph of a fax machine design.

Fax

sendFax

done

receiveFax

ImageProc

Receive Send

Figure 4. Complete IDAR graph of a fax machine.

Fax
2:sendFax

3:connect

4:hookUpDn,
6:dial

15:done1:sendPressed

13:scan

print

pixelRow

xferBulk

pages

14:pages

8:connected

5:dialTone,
7:answered 11:response

10:xfer

9:negotiate 12:speed

receiveFax

Image
Proc

CtlPanel

SpeedDials

Receive

Connect Negotiate

Modem

Send

Scanner

Printer

44 COMMUNICATIONS OF THE ACM | JULY 2017 | VOL. 60 | NO. 7

practice

diagrams, attempting to integrate
them mentally, which “unnecessarily
strains developers’ cognitive abilities.”
IDAR eliminates this wasteful mental
effort by combining structure and be-
havior into one graph.

IDAR’s resulting clarity should pro-
duce shorter learning curves and fewer
misunderstandings and oversights,
improving quality and shortening
schedules.

Packages in UML may be nested,
forming a hierarchy. This hierarchy,
however, does not consist of roles,
and the diagram inside each pack-
age is a network and not a hierarchy.
Consequently, a hierarchy of pack-
ages doesn’t improve understandabil-
ity much. Subsystems in IDAR don’t
suffer from these disadvantages, and
thus enjoy the full gain in understand-
ability detailed here.

Note that organizational charts for
corporations remain easy to under-
stand regardless of their size. Because
IDAR graphs are similar, they also
should scale to any size and remain
equally as easy to understand.

Resistance to messiness. A second
important advantage of IDAR graphs
over UML is they hinder the messiness
(disorganization) that occurs when
changes and enhancements are spliced
into code with little regard for main-
taining consistency of design. This
claim is backed up by the following sen-
sible constraints from the IDAR rules:

 ˲ The Identify rule prevents notices
from initiating actions. In practice,
it prevents a developer from creating
spaghetti by scattering notice calls
around, because notices are only al-
lowed to convey needed information.

 ˲ The Down rule prevents a subordi-
nate from commanding a superior.

 ˲ The Role rule prevents unexpected
side effects, a common problem.

UML provides none of these defens-
es against messiness. For example,
suppose you caused the Modem object
in the fax machine to tell the Receive
object to do something. This would
add a line to the two UML diagrams
(Figures 1 and 2) that is inconspicuous
and acceptable. Doing so in the IDAR
graph in Figure 4, however, would vio-
late the Down rule because a subordi-
nate would be commanding a superior.
This is an example of the design decay
that IDAR prevents.

others and, equivalently, which objects
have broad versus narrow roles. In Fig-
ure 4, it is obvious that Fax is the top-
level controller, and that Send and
Receive are second-to-top-level con-
trollers having rather broad roles. The
corresponding UML diagrams conceal
these helpful control relationships and
role breadths.

 ˲ The subordinates of each supe-
rior form a closely related group, help-
ing developers to associate functions
with groups of objects. In Figure 4, it
is clear that Connect and Negotiate

are closely related workers under the
same bosses, whereas UML conceals
this tight affiliation. Unlike UML, IDAR
reveals work groups.

 ˲ In an IDAR graph, command calls
are more prominent than notice calls
because they are more important. UML
conceals degrees of importance.

 ˲ Throughout history, people have
selected role hierarchies to represent
organizations, indicating that they are
most understandable.

 ˲ Research by experts in cognitive
theory has shown that UML has se-
vere problems with understandability
(“cognitive effectiveness”).3 Specifical-
ly, UML has “alarmingly high levels of
symbol redundancy and overload” and
poor “visual discriminability.” IDAR
graphs were designed to avoid both of
these problems.

 ˲ Other research has revealed that
developers understand software de-
sign as an integrated interplay of its
structure and behavior.1 UML splits
structure and behavior into two or
more separate diagrams, reducing
comprehension as developers are
forced to flip back and forth between

Figure 6. UML sequence diagram for sending a fax.

Fa
x

C
tl

P
an

el

S
ca

nn
er

send
Pressed

sendFax

done

scan

pages

connect
hookUpDn

dialTone

dial

answered

negotiate

speed

xfer

response

connected

C
on

ne
ct

M
od

em

N
eg

ot
ia

te

S
en

d

Figure 5. Inheritance hierarchy of
a CD player.

DiskMotor LaserMotor

Laser AudioMotor

ElectronicDevice

JULY 2017 | VOL. 60 | NO. 7 | COMMUNICATIONS OF THE ACM 45

practice

Limitations of IDAR Graphs
IDAR graphs do have the following lim-
itations:

 ˲ Object level. IDAR is intended
for object-level and subsystem-level
design, so it’s neither an ADL (archi-
tecture description language) nor a
system modeling language. For mod-
eling a system, OPM (Object Process
Methodology)1 is a strong contender.

 ˲ Requires centralized control. IDAR
relies on control being organized as a
command hierarchy, making it unsuit-
able for decentralized software with
distributed control. The top levels of
such software should be modeled in
another way. At some level, however,
the components of decentralized soft-
ware are amenable to centralized con-
trol and can be designed using IDAR
graphs like ordinary software.

 ˲ Less expressive than UML. UML
can portray more views of designs than
IDAR. For example, an IDAR graph is
incapable of portraying transitions
among states, deployment onto pro-
cessors, or generalizations among
classes. UML has diagrams for these
and other aspects of design, and they
should be employed when appropriate.

A Pilot Program
An important program was designed,
coded, and deployed at Northrop Grum-
man using IDAR graphs. Responsible
for calibration and testing of circuit
boards and systems, the program is be-
ing used on the production line of an
electronic product. We are forbidden
from publishing this proprietary design,
but we can say it has 23,000 lines of C++
code and is complex enough to have 38
classes, four subsystems, and 10 threads
to handle various realtime matters. This
medium-size program is not a toy.

Several people wrote and modified
this program over several years, so it
had become somewhat messy and was
not even object oriented. The program
consisted solely of tests, and I was
charged with adding much nontest
functionality to it, more than doubling
its size. Thus, more than half of the
code represents new design.

The existing code was refactored,
creating objects conforming to the
IDAR rules. I then designed and added
the new capabilities in stages. During
this process, unexpected requirements
were added to the project, stress-test-

ing the IDAR approach. IDAR graphs
accomplished the following:

 ˲ Maintained clarity throughout de-
sign and implementation. Interactions
among objects were so clear that any
potential problems of misunderstand-
ings among objects were avoided;

 ˲ Easily accommodated several
changes and additions to the require-
ments. The hierarchy’s clarity made
it obvious where changes required by
new features should be made;

 ˲ Enforced good organization;
 ˲ Did not impose excessive con-

straints on the design. The four rules
provided enough flexibility that the
design did not need to be contorted in
order to satisfy them; and,

 ˲ Made design easier because the
rules provided guidance. The top and
bottom objects are easy to define, and
defining objects between those anchor
objects is not difficult. This ease of de-
sign was a surprise because imposing
four rules would be expected to make
designing more difficult, not easier.

Based on its results, those of us fa-
miliar with this effort believe the chief
benefits of IDAR graphs over UML are
their great clarity and enforcement of
good organization. This pilot program
was a strong success, and managers
were pleased enough that they arranged
for IDAR to be taught to the other soft-
ware developers.

In addition to this pilot program,
many trial designs have been created
using IDAR graphs, and four life-size
applications are described in The
IDAR Method of Software Design.5

Conclusion
A hierarchy of roles appears to be es-
sential for clearly portraying the design
of any centralized organization, wheth-
er it consists of people or objects. The
inability of today’s object-oriented
programming technology to represent
this crucial kind of hierarchy is surpris-
ing, and perhaps its absence has been
accepted based on the incorrect belief
that an inheritance hierarchy is a suit-
able substitute.

An IDAR graph is clearer than UML
for two main reasons: It reveals the hi-
erarchy of roles and the breadths of
those roles; and the triads (why-what-
how) offer deeper insights into the na-
ture of objects. UML cannot provide
these. Given that IDAR graphs are clear-

er than UML, and that the four rules un-
derlying them resist messiness, devel-
opers should produce fewer bugs when
designing and implementing software
using IDAR graphs. The result will be
improved quality and timeliness.

This article contains enough in-
formation to enable readers to create
designs using IDAR graphs. For more
information, you can download the
slides from a presentation at the IEEE
Software Technology Conference in
2014.4 Also, refer to The IDAR Method of
Software Design,5 which not only details
this method (and related topics), but
also includes the four life-size applica-
tions mentioned in this article.

Acknowledgments. I am indebted
to Jim Ray for his consistent support
of the IDAR method. Thanks to Jim
Wilk and Dorothy Kennedy for their
unswerving support. Sammy Messian
managed the pilot program that used
IDAR and values it for the fine results
it produced. All four are managers at
Northrop Grumman.

 Related articles
 on queue.acm.org

UML Fever: Diagnosis and Recovery
Alex E. Bell
http://queue.acm.org/detail.cfm?id=1053347

Coding for the Code
Friedrich Steimann and Thomas Kühne
http://queue.acm.org/detail.cfm?id=1113336

Software Development with Code Maps
Robert DeLine, Gina Venolia, and Kael Rowan
http://queue.acm.org/detail.cfm?id=1831329

References
1. Dori, D. Why significant UML change is unlikely.

Commun. ACM 45, 11 (2002), 82–85.
2. Kiczales, G., et al. Aspect-oriented programming.

Proceedings of the 11th European Conference on
Object-Oriented Programming: (1997), 220–242.

3. Moody, D., van Hillegersberg, J. Evaluating the
visual syntax of UML: An analysis of the cognitive
effectiveness of the UML family of diagrams. Software
Language Engineering. Springer-Verlag, Berlin,
Heidelberg, 2009, 16–34.

4. Overton, M. Command graphs: a significant
improvement to OOP/OOD. IEEE Software Technology
Conference, 2014; http://conferences.computer.org/
stc/2014/index.html or http://www.ieee-stc.org.

5. Overton, M. 2014. The IDAR Method of Software
Design. CreateSpace, Seattle, WA, 2014.

6. Rumbaugh, J., Jacobson, I., Booch, G. Unified Modeling
Language Reference Manual, 2nd ed. Addison-Wesley,
Boston, MA, 2004.

7. Vicente, K. Cognitive Work Analysis. Lawrence
Erlbaum Associates, Mahway, NJ, 1999, 174–176.

Mark Overton is a software engineer at Northrop
Grumman working on various parts of software-defined
radios. He previously worked at HP, contributing to both
the architecture and implementation of all-in-one printers,
particularly their scanners.

Copyright held by owner/author.
Publication rights licensed to ACM. $15.00.

http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fqueue.acm.org
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1053347
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1113336
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fqueue.acm.org%2Fdetail.cfm%3Fid%3D1831329
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fconferences.computer.org%2Fstc%2F2014%2Findex.html
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fwww.ieee-stc.org
http://mags.acm.org/communications/july_2017/TrackLink.action?pageName=45&exitLink=http%3A%2F%2Fconferences.computer.org%2Fstc%2F2014%2Findex.html

	Table of Contents
	Departments
	Editor’s Letter
	Today’s Communications of the ACM

	Cerf’s Up
	A Brittle and Fragile Future

	BLOG@CACM
	‘Generation CS’ Drives Growth in Enrollments

	Calendar
	Careers

	Last Byte
	Upstart Puzzles
	Ruby Risks

	News
	Building a Brain May Mean Going Analog
	Cracking the Code on DNA Storage
	Artificial Intelligence Poised to Ride a New Wave
	Jean E. Sammet 1928-2017

	Viewpoints
	Privacy and Security
	Cryptovirology: The Birth, Neglect, and Explosion of Ransomware

	Economic and Business Dimensions
	Unknowns of the Gig-Economy

	The Profession of IT
	The Beginner’s Creed

	Viewpoint
	The Informal Guide to ACM Fellow Nominations

	Practice
	Side Effects, Front and Center
	The IDAR Graph
	Research for Practice: Tracing and Debugging Distributed Systems; Programming by Examples

	Contributed Articles
	Reimagining the Avatar Dream: Modeling Social Identity in Digital Media
	How Important Is IT?

	Review Articles
	Inference and Auction Design in Online Advertising

	Research Highlights
	Technical Perspective
	IronFleet Simplifies Proving Safety and Liveness Properties

	IronFleet: Proving Safety and Liveness of Practical Distributed Systems
	Technical Perspective
	Building a Better Hash Function

	Fast and Powerful Hashing Using Tabulation

